
AFRL-AFOSR-UK-TR-2011-0047

Plan Representations for Distributed Planning and Execution

Gerhard J Wickler

 University of Edinburgh
 AIAI, School of Informatics

 Appleton Tower, Crichton Street
 Edinburgh, Scotland, United Kingdom EH8 9LE

EOARD GRANT 09-3090

August 2011

Final Report for 19 July 2009 to 19 July 2011

Air Force Research Laboratory
Air Force Office of Scientific Research

European Office of Aerospace Research and Development
Unit 4515 Box 14, APO AE 09421

Distribution Statement A: Approved for public release distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

15-08-2011
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

19 July 2009 – 19 July 2011
4. TITLE AND SUBTITLE

Plan Representations for Distributed Planning and Execution

5a. CONTRACT NUMBER

FA8655-09-1-3090
5b. GRANT NUMBER

Grant 09-3090
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Dr. Gerhard J. Wickler

5d. PROJECT NUMBER

5d. TASK NUMBER

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Edinburgh
Appleton Tower, Crichton Street
Edinburgh, Scotland , United Kingdom EH8 9LE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
Unit 4515 BOX 14
APO AE 09421

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL/AFOSR/RSW (EOARD)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

AFRL-AFOSR-UK-TR-2011-0047

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report results from a contract tasking University of Edinburgh as follows: The final project report describes work completed towards a new
framework for distributed multi-agent planning and plan execution. The first step focuses on the plan representation that needs to be sufficiently rich to
allow the sharing of plans between humans, software systems, and robotic entities. The basis for this representation is the Core Plan Representation
developed in the mid 90s. This representation and its roots in Artificial Planning research are examined in section 3. The focus of this representation is
the concept of a plan. Plans are executed by agents, and one of the dominant models of agency in agent research describes three mental attitudes of an
agent: beliefs, desires and intentions. In section 4 we shall examine these concepts attempt to merge them with the plan representation. The combined
ontology will then be further refined in section 5, introducing concepts that will be required for a sharable plan representation intended for distributed
multi-agent planning and plan execution. The report then goes on to describe the software support for this representation, which has been developed as
an extension to MediaWiki. The next part of this report defines a number of features that can be used to characterize planning domains, namely domain
types, relation fluency, inconsistent effects and reversible actions. These features can be used to provide additional information about the operators
defined in a strips-like planning domain. Furthermore, the values of these features may be extracted automatically; efficient algorithms for this are
described in this report. Alternatively, where these values are specified explicitly by the domain author, the extracted values can be used to validate the
consistency of the domain, thus supporting the knowledge engineering process. This approach has been evaluated using a number of planning domains,
mostly drawn from the international planning competition. The results show that the features provide useful information, and can highlight problems with
the manual formalization of planning domains. In the final part of this report the focus will be on communication about activity and plans. After an analysis
of existing agent communication standards and interaction protocols defined in these approaches we will define a small number of more complex
protocols for the support of distributed plan execution. This will be concluded with a discussion on execution failure and a fundamental problem that
underlies all existing approaches.

15. SUBJECT TERMS

EOARD, Planning, Distributed Artificial Intelligence, C4ISR

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18, NUMBER
OF PAGES

50

19a. NAME OF RESPONSIBLE PERSON
JAMES LAWTON Ph. D.
 a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS 19b. TELEPHONE NUMBER (Include area code)
+44 (0)1895 616187

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

Plan Representations for Distributed Planning and Execution∗

Final Report

Gerhard Wickler
AIAI, University of Edinburgh

Edinburgh, Scotland

August 4, 2011

Summary

This report describes work completed towards a new framework for distributed multi-agent planning
and plan execution. The first step focusses on the plan representation that needs to be sufficiently rich
to allow the sharing of plans between humans, software systems, and robotic entities. The basis for this
representation is the Core Plan Representation developed in the mid 90s. This representation and its
roots in Artificial Planning research are examined in section 3. The fucus of this representation is the
concept of a plan. Plans are executed by agents, and one of the dominant models of agency in agent
research describes three mental attitudes of an agent: beliefs, desires and intentions. In section 4 we shall
examine these concepts attempt to merge them with the plan representation. The combined ontology
will then be further refined in section 5, introducing concepts that will be required for a sharable plan
representation intended for distributed multi-agent planning and plan execution. The report then goes
on to describe the software support for this representation, which has been developed as an extension to
MediaWiki.

The next part of this report defines a number of features that can be used to characterize planning do-
mains, namely domain types, relation fluency, inconsistent effects and reversible actions. These features
can be used to provide additional information about the operators defined in a strips-like planning do-
main. Furthermore, the values of these features may be extracted automatically; efficient algorithms for
this are described in this report. Alternatively, where these values are specified explicitly by the domain
author, the extracted values can be used to validate the consistency of the domain, thus supporting the
knowledge engineering process. This approach has been evaluated using a number of planning domains,
mostly drawn from the international planning competition. The results show that the features provide
useful information, and can highlight problems with the manual formalization of planning domains.

In the final part of this report the focus will be on communication about activity and plans. After an
analysis of existing agent communication standards and interaction protocols defined in these approaches
we will define a small number of more complex protocols for the support of distributed plan execution.
This will be concluded with a discussion on execution failure and a fundamental problem that underlies
all existing approaches.

∗Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant
number FA8655-09-1-3090. The U.S. Government is authorized to reproduce and distribute reprints for Government
purpose notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the
author and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of the Air Force Office of Scientific Research or the U.S. Government.

1

Distribution A: Approved for public release; distribution is unlimited.

Contents

Summary 1

1 The Representation 6

2 The Representation: Methods, Assumptions, and Procedures 6

3 The Core Plan Representation 6
3.1 Plans . 7
3.2 Actions . 7
3.3 Actors . 8
3.4 Resources and Time Points . 8
3.5 Objectives and Evaluation Criteria . 8

4 Beliefs, Desires and Intentions 8
4.1 Semantics . 8
4.2 Task-Centric BDI . 9

5 Combining CPR and BDI 9
5.1 Ontological View . 9
5.2 Refining the Concepts . 10

5.2.1 Plans as Activity Networks . 10
5.2.2 Actions and Activities . 10
5.2.3 Types of Beliefs . 11
5.2.4 Desires and Intentions . 12
5.2.5 Execution Status . 12

6 The Implementation 12

7 Implementation: Methods, Assumptions, and Procedures 12

8 Representing Procedural Knowledge in a Wiki 13
8.1 Fundamentals: Conditions . 13
8.2 Planning Operators . 15
8.3 Actions in a Plan . 16
8.4 Hierarchical Refinements . 18
8.5 Classical Planning Domains . 21
8.6 Classical Planning Problems . 21
8.7 Beliefs, Desires and Intentions . 23
8.8 Agent Capabilities . 25

9 Domain Features to Facilitate Knowledge Engineering 25
9.1 Domain Features . 26
9.2 Related Work . 26

10 Type Information 27
10.1 Type Consistency . 27
10.2 Derived Types . 29
10.3 An Efficient Algorithm . 30
10.4 Evaluation . 31

2

Distribution A: Approved for public release; distribution is unlimited.

11 Static and Fluent Relations 32

12 Inconsistent Effects 32
12.1 Operators . 32
12.2 Actions . 33

13 Reversible Actions 34
13.1 Reversible Operators . 34
13.2 Unique Reversibility . 35

14 Communicating Plans: Methods, Assumptions, and Procedures 35

15 Background: Agent Communication 35
15.1 Knowledge Sharing and KQML . 36

15.1.1 Performatives . 37
15.1.2 Protocols . 38

15.2 The FIPA Agent Communication Language . 38
15.2.1 Message Structure . 38
15.2.2 Performatives . 39
15.2.3 Protocols . 40

16 Agent Communication for Plan Execution 41
16.1 Simple Action Execution . 41
16.2 Abandoning Execution . 42
16.3 Execution of Plans . 43

17 Dealing with Execution Failure 44
17.1 Execution Failure Protocol . 44
17.2 Execution Failure and Planning . 44

18 Results and Discussion 45

19 Conclusions 46

3

Distribution A: Approved for public release; distribution is unlimited.

List of Figures

1 Main concepts of the CPR . 6
2 Main concepts of the BDI model . 9
3 Plans as <I-N-C-A> objects . 10
4 Refined activities . 11
5 Types of belief of an agent . 11
6 Main concepts of the CPR/BDI Representation . 14
7 An Operator rendered in the Wiki . 17
8 An Action rendered in the Wiki . 19
9 A Refinement/Method rendered in the Wiki . 22
10 A Planning Problem rendered in the Wiki . 24
11 A Capability rendered in the Wiki . 26
12 FIPA Request Interaction Protocol . 41
13 Protocol for Activity Execution . 41
14 Abandoning Execution . 42
15 Protocol for Plan Execution . 43
16 Protocol for Execution Failure . 44

4

Distribution A: Approved for public release; distribution is unlimited.

Acknowledgement of Sponsorship: An acknowledgement of Government support appeared in any
publication of any material based on or developed under this project, in the following terms: ”Effort
sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under
grant number FA8655-09-1-3090. The U.S. Government is authorized to reproduce and distribute reprints
for Government purpose notwithstanding any copyright notation thereon.”

Disclaimer: Every publication of material based on or developed under this project contains the
following disclaimer: ”The views and conclusions contained herein are those of the author and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of the Air Force Office of Scientific Research or the U.S. Government.”

Disclosure of inventions: I (Dr. Gerhard Wickler) certify that there were no subject inventions to
declare during the performance of this grant.

5

Distribution A: Approved for public release; distribution is unlimited.

1 The Representation

Planning is commonly associated with intelligent
behavior in agents [Russell and Norvig, 2003]. The
activity of planning can be defined as an explicit
deliberation process that chooses and organizes ac-
tions by anticipating their outcomes and which
aims at achieving some pre-stated objectives [Ghal-
lab et al., 2004]. Planning in Artificial Intelligence
(AI) is the computational study of this deliberation
process.

The outcome of the planning process and the
solution to a planning problem is a plan, i.e. an
organized collection of actions. Most research in
AI planning has focussed on algorithms for finding
plans, which has proved to be a computationally
very hard problem. Assuming that an agent wants
to achieve the objective that underlies the planning
problem, it will also need to execute the plan. As-
suming further that more than one agent is involved
in the planning and execution, the plan will need
to be communicated between the different agents,
calling for a rich and sharable representation of a
plan.

2 The Representation: Meth-
ods, Assumptions, and Pro-
cedures

To this end, the Core Plan Representation (CPR)
[Pease and Carrico, 1996] was developed. The CPR
establishes a conceptual framework for the rich rep-
resentation of plans that are to be communicated
between agents. The concepts provided are generic
in the sense that they will be important for most
uses of a plan, be it for execution or any other pur-
pose. Agents using these concepts in the represen-
tation of their plans avoid ambiguity as the CPR is
a standard that defines these concepts. However,
the CPR concepts are focussed on plans and the
fact that these plans may be executed by agents is
almost incidental.

In this research we will look at the concept of a
plan as it is defined in the CPR, but we will shift the
emphasis to the agents that work with this plan. To
achieve this aim, we will attempt to merge the main
concepts of the CPR with the core mental attitudes
established in research into intelligent agents: Be-

Plan

Action Objective

Actor

TimePoint

Resource Evaluation
Criterion

has-a

Figure 1: Main concepts of the CPR

liefs, Desires and Intentions (BDI). Furthermore,
we will refine a number of the concepts involved.
This will allow for an even richer representation for
communicating plans between agents.

The ultimate aim here is to support the dis-
tributed execution of a plan (and its sub-plans) by
a group of agents in a dynamically changing envi-
ronment. However, this aspect will be discussed in
future reports.

3 The Core Plan Representa-
tion

The prime motivation for the development of the
CPR was to address the plan interchange require-
ments of several military planning systems. Just
like there are a number of different planning prob-
lems and approaches in AI, there are different rep-
resentations that come with the different systems
that implement the various approaches, perhaps
even more. Furthermore, systems that process
plans, e.g. workflow systems, control systems, etc.,
will need to exchange information with the AI plan-
generating systems. And we must not forget the
human in the loop: people need to understand
plans in order to execute them in line with the in-
tent that underlies them.

The result of the CPR effort is a small ontology
that defines a few core concepts that are expected
to be shared between most systems that deal with
plans. The way these concepts are defined relies on

6

Distribution A: Approved for public release; distribution is unlimited.

ontological principles: each concept is defined by
the relations that must hold with other concepts
and some internal structure. Furthermore, there
is human-readable text that explains the concepts,
but this can usually not be processed by any plan-
ning system.

The main concepts that form the CPR are shown
in figure 1. The most important relation that holds
between these concepts is the “has a” relation that
indicates that an instance of one concept has a com-
ponent that is an instance of the other concept.
Alternatively, the second concept forms a building
block for the former. From an ontological point of
view this is slightly unusual as, in most ontologies,
the “is a” relation is the most prominent relation.

3.1 Plans

The central concept in the CPR is of course the
plan, the thing the CPR is meant to represent. A
plan is also the output of a classic AI planning sys-
tem, where a plan is an organized collection of ac-
tions. In the CPR, the definition of a plan includes
more:

• name: a unique reference that can be used to
refer to a specific plan;

• sub-plans: a set of finer grained plans which
correspond to a hierarchical decomposition of
the overall plan;

• objectives: a set of objectives that are ac-
complished by the plan;

• actions: a set of actions which must be per-
formed as part of this plan;

• alternatives: that names of other plans (that
were considered);

• evaluation: the merits of this plan (compared
to its alternatives); and

• issues: metadata about the status of plan cre-
ation.

Explicit naming of plans is necessary for commu-
nication purposes. The inclusion of sub-plans indi-
cates that the approach is based on a classic HTN
planning paradigm [Tate, 1977], where a planning
problem is given as a task (an activity) to be accom-
plished. However, the nature of objectives is not

well defined in the CPR: objectives could be tasks
as in HTN planning or they could be state-related
goals as in STRIPS planning [Fikes and Nilsson,
1971]. We shall assume that objectives are meant
to include both. Actions will be considered in de-
tail below. The next two components, alternatives
and merits, are usually not considered in classic
planning, but are of great practical relevance dur-
ing the planning process. Finally, issues in CPR
are a generalization of flaws in AI planning.

3.2 Actions

Actions are the main components in a plan. They
correspond to activities an agent can do. While
plans are considered too complex to be directly ex-
ecutable by and agent and hence require being bro-
ken down, actions can be considered primitive in
that an agent does not need to be told as part of
the plan how the action is to be done, i.e. further
decomposition is optional. In the CPR, an action
consists of:

• name: a unique reference that can be used to
refer to a specific action in a plan;

• sub-actions: a set of finer grained actions
which correspond to a hierarchical decompo-
sition of the action (e.g. if there are multiple
actors) ;

• actors: a set of agents that will execute the
described action;

• resources: a set of (reusable and consumable)
resources that will be used during the execu-
tion of this action;

• plan objects: a set of objects that function
as parameters to this action; and

• begin and end: two time points representing
the beginning and the end of this action.

Again, explicit naming of actions is useful for
communication. The decomposition of actions into
sub-actions is odd from a planning perspective:
what is the difference between a plan that requires
decomposition and an action that requires decom-
position? One difference is that actions are associ-
ated with actors, the agents that execute the action.
Furthermore, actions are associated with resources

7

Distribution A: Approved for public release; distribution is unlimited.

used by the action, giving an action a more con-
crete feel than a plan, and making them the sub-
ject of scheduling algorithms rather than planning
in AI terminology. The same is true for beginning
and end time points, which are usually assigned by
schedulers.

3.3 Actors

While plans and actions are concepts firmly rooted
in classic AI planning, the concept of an actor has
not received much attention in the planning litera-
ture. However, there is another area of AI, multi-
agent systems [Wooldridge and Jennings, 1995;
Wooldridge, 1999], in which the concept of an agent
is central. More on this below. In the CPR, an ac-
tor is a relatively simple concept:

• name: a unique reference that can be used to
refer to a specific actor;

• objectives: a set of of objectives this actor
shares with the plan; and

• sub-actors: a set of actors if this is an aggre-
gate actor.

The objectives here are a subset of the objectives
that are associated with a plan to which an ac-
tion assigned to this actor belongs. This allows for
the limited representation of rationale in the plan,
which can be most useful for deciding how exactly
to implement an action or during execution failure.
The representation of sub-actors allows for the rep-
resentation of hierarchical organizations. Whether
an actor has authority over its sub-actors is not
defined in the CPR.

3.4 Resources and Time Points

Resources are not defined formally in the CPR.
They are given a name that can be used to refer
to them, and they are used by actions, but other
than that, it is up to the planner to use them in a
meaningful way. Again, AI planning does not deal
much with resources as scheduling algorithms tend
to be much more efficient in managing them.

The same applies to time points in CPR, except
that they are not even given a name. This may
be due to the fact that time has a common sense
meaning and is exactly that which is used here.

3.5 Objectives and Evaluation Cri-
teria

Objectives come in two forms in AI planning, as
mentioned above, either as tasks to be performed
(activities) or goals to be achieved (world state con-
ditions). Either way, they are part of the planning
problem, but usually not part of the plan that is a
solution to a planning problem.

In the CPR an objective contains the following
attributes: type, value, actions, evaluation crite-
ria, and sub-objectives. The actions are those that
contribute to this objective. They may also con-
tribute to other objectives, and actors that execute
these actions should have this objective as one of
their objectives to be consistent. Associated with
an objective is a set of evaluation criteria.

Like resources and time points, evaluation crite-
ria are not defined in terms of attributes within the
CPR.

4 Beliefs, Desires and Inten-
tions

A BDI agent is distinguished by the organization
of its knowledge, which governs its behavior, into
three distinct knowledge structures based on the
mental state modalities: beliefs, desires and inten-
tions [Rao and Georgeff, 1991]. Beliefs represent
the agent’s current knowledge about itself and its
environment, desires represent its longer term goals
and objectives of its behavior, and intentions rep-
resent the agent’s local decisions about the actions
it intends to perform.

4.1 Semantics

The three core concepts that make up the BDI
model are not defined in the style of an ontology,
but rather through an operational semantics. A
BDI agent executes its behavior by manipulating
its internal knowledge and data according to the
standard BDI inference loop:

8

Distribution A: Approved for public release; distribution is unlimited.

function BDI-inference-loop(Bel, Des, Int)
while true do

p← getNextPercept()
Bel← beliefRevision(Bel, p)
Int← generateOptions(Bel, Des)
Int← filterIntentions(Bel, Des, Int)
plan← generatePlan(Bel, Int)
execute(plan)

A BDI agent first processes the next external
percept (such as an incoming message). As a re-
sult the agent revises its beliefs. Then, based on
the new beliefs, it generates several different inten-
tional options out of which one is adopted by means
of the filterIntention function. Next, the gener-
atePlan function elaborates a plan for the adopted
intentions that is then executed. In applications of
the BDI model this planning process is often based
on pattern-matching against a library of predefined
plans.

The BDI model is one of an agent that fulfills
three key qualities: autonomy, reactivity and in-
tentionality [Wooldridge and Jennings, 1995]. The
BDI model does not explicitly support the social
properties of an agent: the ability to communicate,
cooperate and reason about other agents in a multi-
agent community.

4.2 Task-Centric BDI

Implementations of the BDI model are often very
simple in that they are based on a propositional
representation: beliefs are sets of propositional
symbols that hold in a given world state; desires
and intentions are also propositions, namely the
conditions the agent desires or intends to make true
in a future state of the world. Defined like this, the
BDI model can be reasoned about with classic theo-
rem provers quite easily. However, a more complex
implementation, e.g. using first-order atoms as be-
liefs means current theorem provers are insufficient
to work as interpreters for an agent specified at the
BDI level.

For this reason we have adopted a task-centric
view of an agent, in which beliefs are essentially
sets of first-order atoms, and desires and intentions
are described by tasks to be accomplished and plans
to be executed respectively [Wickler et al., 2007].

Agent

Belief Intention

Actor

Plan

Desire

has-a

is-a

Figure 2: Main concepts of the BDI model

In this view, an HTN planner can be used as an
agent interpreter.

5 Combining CPR and BDI

In this section we will present a combined view of
the main concepts from the CPR and the BDI agent
model. We will then continue to extend the model
by refining the different concepts in order to enrich
the representation. The aim is to come up with
a model that allows semantically rich plans to be
shared.

5.1 Ontological View

Despite the name (BDI), the central concept of this
model is the agent. An agent is defined by its men-
tal attitudes just like a plan in the CPR is defined
by its attributes. Thus, an agent is defined by a set
of beliefs, a set of desires, and a set of intentions,
as shown in figure 2.

The concept of a BDI agent represents essentially
the same concept as a CPR actor. In both cases,
these are the entities that execute actions and de-
liberately manipulate the world according to some
mental model. There are some differences though:
In the BDI model the mental attitudes are the fo-
cus, whereas the CPR only mentions the objectives
of an agent, and only those relevant to the plan in
which the actor occurs are considered. The BDI
model on the other hand ignores the internal struc-

9

Distribution A: Approved for public release; distribution is unlimited.

Activity Network (Plan)

Activity

Actor

TimePoint

Resource

Issue

Annotation

Constraint

Objective

Evaluation
Criterion

Figure 3: Plans as <I-N-C-A> objects

ture of an agent that may be an organization with
sub-actors; it only considers individual agents.

Objectives can be tasks to be accomplished or
goals to be achieved. They correspond to desires
in the task-centric or the classic BDI model respec-
tively. In HTN planning there is no real distinction
between a task which can be given as input to a
planner and a plan that is the corresponding out-
put; both are plans. The difference is that a task
usually requires refinement before it becomes an ex-
ecutable plan, and that is exactly what refinement
planners do [Kambhampati et al., 1995].

5.2 Refining the Concepts

The nine concepts introduced so far can be used as
the core of a sharable plan representation. In the
remainder of this section we will refine and extend
these concepts by extending the ontology. This will
include relations that must hold between the var-
ious concepts, resulting in a more tightly defined
semantics.

5.2.1 Plans as Activity Networks

The first refinement to be introduced here is based
on the <I-N-C-A> ontology [Tate, 2003] which de-
scribes a plan consisting of four main components:
issues, nodes, constraints and annotations. Despite
different terminology used, the <I-N-C-A> model is
really an extension of the CPR model, where both,
an <I-N-C-A>object and a plan are in fact a speci-

fication of an activity network, and this is the term
we have used in figure 3.

Given that the <I-N-C-A> model is meant for
describing any type of synthesized object, not just a
plan, its terminology is also more general, referring
to the synthesized components as nodes. We can
be more specific here: in a plan the synthesized
components are activities. An activity corresponds
directly to an action in the CPR. However, the term
action has been heavily overloaded in the planning
literature, making it more convenient to adopt the
term activity here. Activities will be discussed in
detail below.

A second component already included in the
CPR is the constraint. However, we omitted this
concept here as it was included in the CPR ontol-
ogy but not related to any of the other concepts.
<I-N-C-A> has constraints as main components of
a plan. In fact, the objective of a plan can be it-
self a constraint, one that must be included in a
plan. This is coherent with the view that a plan
is a specification of behavior, and the objective is
a special constraint, namely that any refinement of
the specification must include the achievement of
the objective.

Issues have no equivalent concept in CPR or BDI.
One interpretation of an issue is a meta-level activ-
ity, i.e. something that needs to be done at the
planning level. For example, flaws that need to be
resolved can be seen as issues that exist within a
plan. A more general view in line with the general
synthesis problems for which <I-N-C-A> is suitable,
an issue is a question [Conklin, 2005] that needs to
be answered about the plan.

Finally, annotations can be used to capture any
additional information about the plan or elements
of it, e.g. rationale [Wickler et al., 2006].

5.2.2 Actions and Activities

Activities are an extension of actions in the CPR
and the new components are shown in figure 4. As
in the CPR, we must have an actor (agent) asso-
ciated with an activity. This may be the agent
executing the activity, or at least being responsible
for it. An activity may rely on a given set of re-
sources, and an activity has at least two time points
associated with it, the beginning and the end. Fur-
ther time point may be specified depending on the
complexity of the representation.

10

Distribution A: Approved for public release; distribution is unlimited.

Activity

Actor

TimePoint

Resource

Signature
Parameter

Effect

Precondition

Name

Figure 4: Refined activities

From the more traditional view of planning we
have also taken the signature, preconditions and
effects as elements of an activity. The signature is
simply a refinement of the name attribute that is
defined in the CPR. The signature itself consists
of a name that denotes the activity type, corre-
sponding to a STRIPS operator name, and a set of
(typed) parameters representing the objects manip-
ulated by this activity. In the CPR these objects
were directly associated with the activity as plan
objects.

Preconditions and effects are again taken from
a STRIPS planning view and there did not ap-
pear to be a corresponding field in the action of
the CPR. Both are world state conditions, usually
represented as atoms of first-order logic. More com-
plex representations are possible here. If there is an
agreed ontology of activity types that is shared be-
tween all agents, then there is no need to explicitly
include preconditions and effects in the plan as they
are indirectly available through the ontology.

The reason why they are important is that pre-
conditions need to be verified at execution time:
when an agent is about to start an activity it should
check that all the preconditions hold to ensure that
the context for executing the activity in the current
plan is indeed given. Similarly, when the activity
is completed, the agent should check that all the
required effects have been achieved.

Belief

Signature

Agent

Capability

Actions

Method

State-Belief

Signature

Signature

Plan

Figure 5: Types of belief of an agent

5.2.3 Types of Beliefs

Beliefs are the statements an agent believes to hold
in the world at given point in time. For the a
plan to be shared it is important for the agents in-
volved to share certain beliefs, which is why these
should be included in a rich plan representation.
An overview of the types of beliefs we have identi-
fied is given in figure 5.

Firstly, there are beliefs about the world state.
This is factual knowledge about relations that hold
between objects at specific points in time. These
can be in the past, present, or future. The knowl-
edge is static in the sense that it represents time
slices of world states and does not include relations
that go from one time slice to another.

Second, there is knowledge about capabilities of
different agent. In a collaborative environment
agents need to know what others are capable of
doing. Thus, each capability is associated with an
agent. The capability itself is given as the signature
of the activity the agent is capable of performing.
The signature effectively is a pointer to a more elab-
orate description in the shared ontology. It is not
expected that the capability is always available, or
in all circumstances. To use the capability of an-
other agent in a plan, some negotiation with that
agent needs to take place, either at planning time,
or at execution time which can lead to failure of
course.

Next, there are methods known to an agent. This
is procedural knowledge that is necessary during

11

Distribution A: Approved for public release; distribution is unlimited.

the (HTN) planning process. Technically, there are
sometimes known as refinements as they describe
how a complex activity can be refined into some-
thing that is closer to an executable plan, e.g. by
breaking the activity down into sub-activities that
are organized in some way. Thus, the result of the
refinement is itself an <I-N-C-A> object, i.e. a plan.
In the procedural knowledge of the agent this is as-
sociated with the activity that can be refined by
this method.

Finally, an agent needs to know what activities it
can execute directly, i.e. without further planning.
Each of these is described by the signature of the
activity.

Note that this representation does not include
knowledge about knowledge of other agents. While
this is sometimes necessary for reasoning, it is also
a complex problem that we con not address ade-
quately yet.

5.2.4 Desires and Intentions

As mentioned above, desires and intentions are
both represented as activity networks (plans) in
this representation. Both can be seen as an agenda
though which agent behavior is guided. The dif-
ference lies in the fact that the agent holding the
desires and intentions is committed to only the in-
tentions. The commitment may be to itself, or it
may be to one or more other agents. In the latter
case an activity that is a commitment cannot sim-
ply be dropped, but there must be a way of nego-
tiating this with the other agents the commitment
is to. There are no commitments with respect to
desires.

Note that a special type of activity is planning.
Thus, and agent may have an intention to plan for
one of its desires (at a future point in time). This
can then result in the agent adopting that plan as
an intention, scheduled to be executed. If this new
plan contains another planning activity, this ap-
proach can be used to control a robotic agent.

5.2.5 Execution Status

The final concept to be described here is not men-
tioned in either the CPR or the BDI model, but it
is clearly relevant for plan execution: the execution
status of a plan. As this a rather simple component
at this stage, no figure is necessary to describe it.

The execution status of a plan is simply defined as
the completed actions, the actions in progress, and
the actions still to do. Each of these actions must
be associated with an agent in the plan.

If the plan can be executed without problems,
this simple structure will suffice to describe the ex-
ecution status os a plan. However, plan plans tend
to go wrong, especially in military domains where
adversaries have an active interest in disrupting
plans. This means plan repair and re-planning may
need to occur as part of the plan execution. The
plan execution status must capture this. Thus, fur-
ther research is required to establish concepts and
structures that can capture this process and the
(dynamic) plan adequately.

6 The Implementation

The sharing of information online has progressed
significantly with the advent of Web 2.0 technology,
where the content of websites can be dynamically
updated by the users of that site. One of the tech-
nologies that implements this approach are wikis,
of which MediaWiki [Barrett, 2008] is one of the
most popular and robust. Information in a wiki is
usually more or less free form, which has the advan-
tage that anything can be written down and shared.
The drawback is that unstructured information al-
lows for only limited automated processing.

7 Implementation: Methods,
Assumptions, and Proce-
dures

To address this issue, MediaWiki has an extension
mechanism that allows for arbitrary XML tags to
be defined, and this is the approach we have chosen
to develop a semi-formal software tool that sup-
ports the development of rich and sharable plan-
ning and plan information. The concepts identified
in the first report are implemented as XML ele-
ments that can be used in an otherwise free-form
document. This means people can develop plans
and planning knowledge even if they are not ex-
perts in the formal aspects of the representation.
Other people could then mark up the content using
the formal concepts provided by the CPR/BDI rep-

12

Distribution A: Approved for public release; distribution is unlimited.

resentations. MediaWiki provides the mechanisms
for collaborative article development and sharing.

This report describes the implementation of the
different elements that come with the extension to
MediaWiki. It can be seen as a reference manual
that illustrates the different concepts using a rela-
tively simple domain that is used in the literature
on AI planning.

8 Representing Procedural
Knowledge in a Wiki

In this section we will describe the formal syntax
of a mark-up language that has been implemented
as part of the extension of MediaWiki [Barrett,
2008]. This language defines a number of XML
tags that can be used give wiki text describing pro-
cedural knowledge a formal meaning that can then
be exploited for formal reasoning about the proce-
dures represented in the wiki articles. The concepts
that are represented by the formal language were
described by a semi-formal ontology in [Wickler,
2010], and an overview of these concepts is repeated
here in figure 6

The implementation of most of these concepts
involves three steps. Firstly, the XML tags that
define wiki text to have a specific formal mean-
ing must be declared. These tags can then appear
in the source of a wiki article. We shall illustrate
the use of these tags with various examples. Sec-
ondly, the marked up text that represents instances
of concepts from the CPR/BDI ontology in figure
6 must be stored in a database. This has been ac-
complished by adding a set of new tables to the
database used by MediaWiki, and the SQL state-
ments used to create these tables will be given as
precise definitions of the entities extracted from an
article. Finally, the source wiki text has be ren-
dered to make it readable for an average user not
familiar with wiki text or the XML tags described
here. We shall used a series of sample screen shots
to illustrate how the text is currently rendered.

8.1 Fundamentals: Conditions

Before we develop the different concepts from the
CPR/BDI ontology, however, we shall look at one
fundamental concept that is shared by many of the

more complex structures: a logical literal. In first-
order logic this represents an atomic relation be-
tween several arguments, or a negation of such an
atomic relation. The relation itself is represented
by a logical symbol, i.e. a name used to refer to
this relation. The arguments typically represent
objects that exist in the domain of interest, and
they too are given names that can be used to refer
to them. The following represents two such atoms
representing world state conditions:

<atom>
<rel name="belong" />
<object name="k1" />
<object name="l1" />

</atom>;
<atom>
<rel name="belong" />
<object name="k2" />
<object name="l2" />

</atom>;

This is example is taken from a toy domain com-
monly used in the AI planning community: the
dock worker robots domain [Ghallab et al., 2004].
The rel XML element defines a logical relation
that must have exactly one attribute, its name,
which can be an arbitrary string. The arguments
to this relation are defined using the object ele-
ment which also assumes one attribute name. Rela-
tions and objects are grouped together in an atom
element. The example states that there is a crane
(k1) which is at location l1, and another crane (k2)
at location l2.

Logical literals like this are used in world state
information, preconditions and effects of actions,
goal descriptions, and a number of other concepts
from the CPR/BDI ontology. The are stored in a
table of conditions that is crested as follows:

create table mw_plan_cond (
aid int unsigned not null,
cid int unsigned not null,
sign bool not null,
cond varchar(128) not null,
role int unsigned not null,
owntype int unsigned not null,
ownid int unsigned not null,

primary key (aid, cid)
);

13

Distribution A: Approved for public release; distribution is unlimited.

Plan

Objective

Actor

TimePoint

Resource

Evaluation
Criterion

Intention

Belief

Desire

Activity

Issue

Annotation

Constraint Signature

Parameter

Effect

Precondition

Name
Capability

Activity

Method

State-Belief

has-a

is-a

Figure 6: Main concepts of the CPR/BDI Representation

14

Distribution A: Approved for public release; distribution is unlimited.

The aid field is defined for every table holding
instances of procedural knowledge and simply ref-
erences the article in which a specific knowledge
element (here, a logical condition) has been de-
fined. The cid is the unique index of this con-
dition. The condition itself consists of a sign indi-
cating whether this is a positive or negative atom,
and a string representation of the condition in the
field cid. The role indicates how this condition
is used, e.g. as a precondition or as an effect. Fi-
nally, there is information about the container of
this condition, namely its type in owntype and the
unique reference of the owner in ownid.

Many examples of rendered conditions will follow
in the remainder of this report.

8.2 Planning Operators

Operators are one of the oldest structures that were
developed for the representation of basic activities.
In the literature, they are also referred to as action
types, or simply actions. The latter is often used
to refer to instances of action types in a plan. An
operator consists of a name, an ordered sequence of
parameters describing the objects that are manipu-
lated by this action type, and a set of preconditions
and effects. The following is an example of wiki text
that has been marked up as an operator:

<operator name="move">
Move a robot from one location to another.

<parameters>
* <var name="r" type="robot" />: the robot

which will be moved by this action;
* <var name="from" type="location" />: the
location from which the robot will move
away (the origin);

* <var name="to" type="location" />: the
location to which the robot will move
(the destination).

</parameters>

<preconditions>
* <atom>
<rel name="adjacent" />
<var name="from" />
<var name="to" />

</atom>: the origin and the destination
have to be adjacent;

* <atom>
<rel name="at" />
<var name="r" />
<var name="from" />

</atom>: the robot has to be at the origin;
* <atom sign="not">
<rel name="occupied" />
<var name="to" />

</atom>: the destination must not be
occupied.

</preconditions>

<effects>
* <atom>
<rel name="at" />
<var name="r" />
<var name="to" />

</atom>: the robot will be at the
destination;

* <atom sign="not">
<rel name="occupied" />
<var name="from" />

</atom>: the origin will no longer be
occupied;

* <atom>
<rel name="occupied" />
<var name="to" />

</atom>: the destination is now occupied
(by the robot);

* <atom sign="not">
<rel name="at" />
<var name="r" />
<var name="from" />
</atom>: the robot is no longer at the
destination.

</effects>

The above definition does not exclude the
origin and destination being the same
location. While this does not constitute
a problem, it may increase the size of
the search space and hence slow down
the planning process.

</operator>

The name of the operator is a required attribute
of the operator tag and must be unique. This ex-
ample also shows an important feature of the repre-
sentation, that is not used much here in the interest

15

Distribution A: Approved for public release; distribution is unlimited.

of brevity: the tagged information is only part of
the representation. Any information that is not di-
rectly part of a formal aspect of the description is
simply added to the wiki text and not marked up
using the XML tags. This text will be rendered by
the wiki as if no extension was present. For typical
standard operating procedures, it is expected that
this constitutes the majority of the description.

The parameters are a sequence of variable dec-
larations. Each variable (tagged var) must have
a name and optionally, a type. Again, the exam-
ple shows that normal text can be mixed into the
representation to clarify and elaborate.

The preconditions and the effects of an oper-
ator are conditions of the type described in the pre-
vious section. As opposed to the parameters, the
order of the preconditions and effects is only stored
in the source text, but may be different when the
operator is exported directly from the database. All
the arguments to the various conditions associated
with an operator should only use variables that are
parameters to the operator.

The database uses two tables to store the oper-
ators (plus the conditions table). The first table
holds the parameter objects with their respective
types. The table is created as follows:

create table mw_plan_param (
aid int unsigned not null,
pid int unsigned not null,
name varchar(16) not null,
type varchar(16),
pos int unsigned not null,
owntype int unsigned not null,
ownid int unsigned not null,

primary key (aid, pid)
);

The pid field is a unique reference to this param-
eter. The name and type contains the respective
attributes from the XML element. The position of
the parameter has to be made explicit in the pos
field as there is no predefined order in the database.

create table mw_plan_operator (
aid int unsigned not null,
oid int unsigned not null,
name varchar(64) not null,
owntype int unsigned,

ownid int unsigned,

primary key (aid, oid)
);

Since both, conditions and parameters have an
explicit link to their owner, the operator itself has
only filed that represents information about the op-
erator directly, namely the name of the operator.
As opposed to conditions and parameters, and op-
erator need not occur as content of some other el-
ement, and hence the owner information may be
null.

When an article that contains an operator is
saved, the relevant information for the tables men-
tioned above is automatically extracted from the
article text and written to the database. Before this
is done, however, any CPR/BDI objects that have
the current article id are deleted from the database.
This ensures that updates are handled correctly.

The rendered article containing the move op-
erator is shown in figure 7. The HTML that is
generated begins with the heading Action Type:
move. The parameters, preconditions and effects
are listed under the following three sub-headings.
The text below the operator is simply a comment
and not part of the formal CPR/BDI representa-
tion.

8.3 Actions in a Plan

Action types define the way the application of an
action changes the world, where an action is an
instance of an operator. There can be many actions
of the same type in a plan, and in fact, there often
are. There can even be multiple actions having
the same parameter values in a single plan. The
following example shows marked up wiki text that
defines a single action:

<action type="move"
ref="CTRL-2011-1"
agent="controller"
finish="2012-01-01 00:00:00">

<parameters>
* <object name="r1" />: move robot nr. 1;
* <object name="loc456" />: from the dock
(the origin);

* <object name="loc789" />: to the yard

16

Distribution A: Approved for public release; distribution is unlimited.

Figure 7: An Operator rendered in the Wiki

17

Distribution A: Approved for public release; distribution is unlimited.

where the containers are (the
destination).

</parameters>

The robot can now be loaded with a
container.

</action>

The action element has a number of required
attributes, the first of which is the name of the ac-
tion type this action instantiates. Since the action
type defines the preconditions and effects, there is
no need for them in the action. Another attribute
is the unique reference of this action, which can be
used to distinguish otherwise identical actions in
a plan. Also required is a reference to the agent
that has to execute the action, which is simply the
name of the agent. Finally, the start and finish
attributes are optional, and the example uses only
the latter to set a deadline for the action.

The content of an action element is a single list
of parameters. Since actions must be fully ground,
all the parameters are objects, as described in the
conditions above.

The database schema that describes how actions
are stored is defined as follows:

create table mw_plan_action (
aid int unsigned not null,
uref varchar(64) not null,
descr varchar(255) not null,
agent varchar(64) not null,
abeg datetime,
aend datetime,
owntype int unsigned,
ownid int unsigned,

primary key (aid, uref)
);

The uref field contains the unique user-defined
reference for this action. The description in descr
contains the action type as well as the parameter
values for the action. agent abeg and aend con-
tain attributes from the action element. Finally,
an action may be self contained, or it may belong
to another entity, which must be a plan.

The wiki text formally defining an action is ren-
dered by our extension to MediaWiki as shown in
the lower part of figure 8.

The time points are defined in a format specific
to the database, but this could be formatted in dif-
ferent ways. Again, it should be clear that the ren-
dered text should be accessible to any user, whereas
the source text is not. A future version of the Me-
diaWiki extension could also link the symbols that
refer to specific objects to web pages that describe
these objects, where available.

8.4 Hierarchical Refinements

The next concept from the CPR/BDI ontology ex-
tends the representation with hierarchical task re-
finements, an approach to AI planning that has
been used by many practical planning systems.
This is because the standard operating procedures
found in manuals often resemble this style of pro-
cedural knowledge. From a technical point of view,
the representation is as for operators, namely, a set
of XML element tags that can be used to mark up
wiki text as a method that breaks down a complex
task into finder grained activities. The following is
an example of such a refinement:

<method name="take-and-put">

<parameters>
* <var name="c" type="container" />: the
container which is moved from pile to
pile;

* <var name="k" type="crane" />: the
crane which will pick up and put down
the container;

* <var name="l" type="location" />: the
location at which all this takes place;

* <var name="po" type="pile" />: the pile
from which the topmost container is to
be moved;

* <var name="pd" type="pile" />: the pile
to which the container is to be moved

* <var name="xo" type="container" />:
the container on which the container to
be moved is currently;

* <var name="xd" type="container" />: the
container onto which the container to
be moved will be.

</parameters>

<accomplishes>
<activity type="move-top-container">

18

Distribution A: Approved for public release; distribution is unlimited.

Figure 8: An Action rendered in the Wiki

19

Distribution A: Approved for public release; distribution is unlimited.

<parameters>
* <var name="po" />: the pile from which
the topmost container is to be moved;

* <var name="pd" />: the pile to which
the container is to be moved.

</parameters>
</activity>
</accomplishes>

<preconditions>
* <atom>
<rel name="top" />
<var name="c" />
<var name="po" />

</atom>: the container must be at the
top of the pile from which it is to be
moved;

* <atom>
<rel name="on" />
<var name="c" />
<var name="xo" />

</atom> (used to bind xo);
* <atom>
<rel name="attached" />
<var name="po" />
<var name="l" />

</atom>;
* <atom>
<rel name="attached" />
<var name="pd" />
<var name="l" />

</atom>;
* <atom>
<rel name="belong" />
<var name="k" />
<var name="l" />

</atom>: both piles and the crane must
be at the same location (used to bind l);
* <atom>
<rel name="top" />
<var name="xd" />
<var name="pd" />
</atom>: (used to bind xd).

</preconditions>

Note that there is no precondition that
requires the crane not to hold a container
already.

<steps>

The first step is to pick up the container
with the crane. As a result the crane will
be holding the container.
<activity type="take" ref="take">
<parameters>
<var name="k" />,
<var name="l" />,
<var name="c" />,
<var name="xo" />,
<var name="po" />.

</parameters>
</activity>

The second step is to put down the
container on the destination pile. As a
result the crane will be empty.
<activity type="put" ref="put">
<parameters>
<var name="k" />,
<var name="l" />,
<var name="c" />,
<var name="xd" />,
<var name="pd" />.

</parameters>
</activity>

</steps>

<constraints>
* <atom>
<rel name="before" />
<object name="take" />
<object name="put" />

</atom>: the ordering of the two steps.
</constraints>

</method>

The description of a method or refinement is
enclosed in a method element, which has one at-
tribute, the name of the method. The first element
inside a method are the parameters, which are ex-
actly the same as for operator descriptions, a se-
quence of variable declarations.

The next element is used to describe what ex-
actly this method accomplishes. This will be a task
marked up with the activity element, which, at
this point, has only one attribute, namely the name
of the activity. In the future, this could be used as

20

Distribution A: Approved for public release; distribution is unlimited.

a reference into an ontology of activities. An activ-
ity contains a list of parameters, which should be
variables declared for the method.

The preconditions that follow look exactly like
the one for an operator.

Instead of effects, however, a method has a set
of steps that must be executed in order to accom-
plish the task for this method. The steps are
again activities that consist of an activity ele-
ment that contains parameters. The difference is
that the activity elements here also contain a ref
attribute that can be used to define a unique refer-
ence name for this activity in this method.

The final element in a method are the con-
straints. The example above shows just one con-
straint that asserts an ordering between the two
activities that constitute the steps of this method.
The exact types of constraints that are permitted
depends on what a reasoning engine, e.g. a plan-
ner, can handle. As the wiki simply stores these
constraints and does not reason over them, any con-
straint can be added to the marked up wiki text.
And, of course, any information that appears im-
portant to the knowledge engineer but does not fit
into the tag structure can be added as plain text
and will not be lost.

The representation of the methods in the
database requires two additional tables that are de-
fined below.

create table mw_plan_activity (
aid int unsigned not null,
rid int unsigned not null,
uref varchar(64) not null,
descr varchar(255) not null,
owntype int unsigned not null,
ownid int unsigned not null,

primary key (aid, rid)
);

The first table stores the activities in a method.
Mostly, this consists of the user defined references
for steps within the method body, and a textual de-
scription containing the activity name and its argu-
ments. The owner of an activity must be a method,
at present.

create table mw_plan_method (
aid int unsigned not null,

mid int unsigned not null,
name varchar(64) not null,
task varchar(255) not null,
owntype int unsigned,
ownid int unsigned,

primary key (aid, mid)
);

Having seen all the elements and structure in the
sample method above, it is perhaps surprising to
see the simplicity of the table that contains the
methods. It has two main fields, the name of the
method and the activity that is the task accom-
plished by the method. All other elements that link
into a method specify the method as their owner in
the respective tables.

The rendered method is shown in figure 9.

8.5 Classical Planning Domains

Planning domains can be defined in the MediaWiki
extension, but consist simply of a named set of
planning operators and methods. As this simply
adds one XML element that surrounds the other
elements described above, there is no need to add
a lengthy example here.

Domains are stored in their own table in the
database which is defined as follows:

create table mw_plan_domain (
aid int unsigned not null,
did int unsigned not null,
name varchar(64) not null,
owntype int unsigned,
ownid int unsigned,

primary key (aid, did)
);

Again, it is the owner field in the various ele-
ments in a domain that are used to link the domain
together. The only descriptive field in this table is
the name of the domain, which is used to define
planning problems.

8.6 Classical Planning Problems

Like classical planning domains, classical planning
problems are simply aggregations of the concepts

21

Distribution A: Approved for public release; distribution is unlimited.

Figure 9: A Refinement/Method rendered in the Wiki

22

Distribution A: Approved for public release; distribution is unlimited.

listed above. A planning problem contains a ref-
erence to a domain, an initial state, and a goal.
The domain is simply an attribute of the problem
and uses the name defined in the domain defini-
tion. Hence, domain names must be unique even
across articles. The initial state and the goal are
both XML elements defined in the extension, each
grouping a set of atoms together. Since state de-
scriptions tend to be rather lengthy, the following
only lists the beginning of the definition of an initial
state:

<state ref="dwr-problem1">

First, there are the static relations
which describe the topology of the world
and the immobile objects which exist in it.
In short, there are two adjacent location
with a crane and two piles each.

There are two locations that are adjacent
to each other. Note that the symmetry of
the adjacency relation has to be made
explicit:

* <atom>
<rel name="adjacent" />
<object name="l1" />
<object name="l2" />

</atom>;
* <atom>
<rel name="adjacent" />
<object name="l2" />
<object name="l1" />

</atom>;

There is one crane at each of the two
locations:

* <atom>
<rel name="belong" />
<object name="k1" />
<object name="l1" />

</atom>;
* <atom>
<rel name="belong" />
<object name="k2" />
<object name="l2" />

</atom>;

...

The state element contains all the atoms the de-
fine the world state. An optional attribute allows
to name this state such that it may be re-used in
a different context, a feature which is not used at
present. In a classical world state all atoms must be
positive, and they are simply listed here, together
with plenty of commenting text. The database ta-
ble for world states is defined as follows:

create table mw_plan_worldstate (
aid int unsigned not null,
sid int unsigned not null,
uref varchar(64),
owntype int unsigned,
ownid int unsigned,

primary key (aid, sid)
);

As before, the way atoms are groups is stored
within the atoms, which are in the conditions table,
where the owner is the same world state. Goals are
almost identical in terms of their representation,
which is why no example is given here. The only
difference is that atom in goals may be negated,
but this feature is not used in the example used.
The page that is generated by MediaWiki which
contains the state (partially) listed above is shown
in figure 10.

8.7 Beliefs, Desires and Intentions

The mental attitudes of the BDI paradigm are
again relatively simple structures that are not very
interesting from a syntactical point of view. Be-
liefs are currently only set of atoms (like in a world
state) that are associated with an agent. More com-
plex beliefs may be introduced as required. De-
sires and intentions are syntactically identical in
that they relate an activity (we adopt a task-centric
view) to an agent.

The database schema for beliefs is defined as fol-
lows:

create table mw_plan_belief (
aid int unsigned not null,
bid int unsigned not null,
agent varchar(64) not null,
tpt datetime not null,

23

Distribution A: Approved for public release; distribution is unlimited.

Figure 10: A Planning Problem rendered in the Wiki

24

Distribution A: Approved for public release; distribution is unlimited.

owntype int unsigned,
ownid int unsigned,

primary key (aid, bid)
);

Apart from the agent that holds the belief, this
may also include a time point at which the agent
holds this belief. This is a compromise between
having no times associated with beliefs and having
intervals associated with them. Whether this is suf-
ficient really depends on the reasoning engine that
will use this information. Desires and intentions
are very similar and they are omitted here.

8.8 Agent Capabilities

The final concept to be described here are agent
capabilities which are used in many frameworks for
multi-agent planning. Capabilities can be seen as
planning operators, instances of which can be as-
signed to an agent that has the capability in a plan.
They can also be compared to task that can be ac-
complished in HTN planning. In both cases, the
representation consists of a symbol representing the
name of the activity that is accomplished with some
parameters representing the objects involved in ap-
plying the capability. An example of a capability
representation is shown in the following:

<capability agent="crane456a">

<accomplishes>
<activity type="move-top-container">
<parameters>
* <var name="po" />: the pile from which

the topmost container is to be moved;
* <var name="pd" />: the pile to which
the container is to be moved.

</parameters>
</activity>
</accomplishes>

<constraints>
* <atom>
<rel name="attached" />
<var name="po" />
<object name="loc456" />

</atom>;
* <atom>

<rel name="attached" />
<var name="pd" />
<object name="loc456" />
</atom>;

</constraints>

</capability>

In addition to the activity accomplished, a capa-
bility description may contain constraints on the
applicability of the capability. These are simi-
lar to the preconditions associated with a method.
In fact, syntactically they are the same. Cur-
rently these conditions are limited to static rela-
tions though, i.e. relations that do not change over
time, such as the topology of the locations. This
means capabilities are either applicable, or they
are not. there is no way to make them applica-
ble in a different situation. The intention is still to
have agents have autonomy and be able to decide
whether they can apply a given capability, depend-
ing on many factors. The constraints can be used
to filter out many plans as infeasible though, which
saves planning effort.

The database table that holds the capabilities is
defined as follows:

create table mw_plan_capability (
aid int unsigned not null,
cid int unsigned not null,
agent varchar(64) not null,
task varchar(255) not null,
owntype int unsigned,
ownid int unsigned,

primary key (aid, cid)
);

The constraints on a capability are again in the
conditions and have the capability as their owner.
The capability defined in the example above is ren-
dered in figure 11.

9 Domain Features to Facil-
itate Knowledge Engineer-
ing

Specifying a planning domain and a planning prob-
lem in a formal description language defines a

25

Distribution A: Approved for public release; distribution is unlimited.

Figure 11: A Capability rendered in the Wiki

search space that can be traversed by a state-
space planner to find a solution plan. It is well
known that this specification process, also known
as problem formulation [Russell and Norvig, 2003],
is essential for enabling efficient problem-solving
though search [Amarel, 1968].

The Planning Domain Definition Language
(pddl) [Fox and Long, 2003] has become a de-facto
standard for specifying strips-like planning do-
mains and problems with various extensions. pddl
allows for the specification of some auxiliary infor-
mation about a domain, such as types, but this
information is optional.

9.1 Domain Features

In this paper we will formally define four domain
features that can be used to assist knowledge engi-
neers during the problem formulation process, i.e.
the authoring of a planning domain which defines
the state space. These features may also be ex-
ploited by a planning algorithm to speed up the
search, but this possibility depends on the actual
planning algorithm used and will not be evaluated
in this paper. The features defined here are: do-
main types, relation fluency, inconsistent effects
and reversible actions. These features are not new,
at least at an informal level. Their specification

is either already part of pddl or could easily be
added to the language.

The values these features take for a given do-
main can also be computed independent of their
explicit specification. A comparison of the com-
puted features to the ones specified in the formal
domain definition can then be used to validate the
formalization, thus supporting the domain author
in producing a consistent domain. Applying this
approach to various planning domains shows that
the features defined here can be used to identify
certain representational problems.

9.2 Related Work

Amongst the features mentioned above, domain
types have been discussed most in the planning lit-
erature. A rigorous method for problem formula-
tion in the case of planning domains was presented
in [McCluskey and Porteous, 1997]. In the sec-
ond step of their methodology types are extracted
from an informal description of a planning domain.
Types have been used as a basic domain feature
in TIM [Fox and Long, 1998]. Their approach ex-
ploits functional equivalence of objects to derive a
hierarchical type structure. The difference between
this approach and our algorithm will be explained
in the relevant section below. This work has later

26

Distribution A: Approved for public release; distribution is unlimited.

been extended to infer generic types such as mo-
biles and resources that can be exploited to opti-
mize plan search [Coles and Smith, 2006].

The distinction between rigid and fluent relations
[Ghallab et al., 2004] is common in AI planning
and will be discussed only briefly. Inconsistent ef-
fects of different actions are exploited in the Graph-
Plan algorithm [Blum and Furst, 1995] to define
the mutex relation. However, this is applied to
pairs of actions (i.e. fully ground instances of op-
erators) rather than operators. Reversible actions,
as a domain feature, are not related to regression
of goals, meaning this feature is unrelated to the
direction of search (forward from the initial state
or regressing backwards from the goal). The re-
versibility of actions (or operators) does not appear
to feature much in the AI planning literature. How-
ever, in generic search problems they are a common
technique used to prune search trees [Russell and
Norvig, 2003].

Preprocessing of planning domains is a technique
that has been used to speed up the planning pro-
cess [Dawson and Siklossy, 1977]. Perhaps the most
common preprocessing step is the translation of
the strips (function-free, first-order) representa-
tion into a propositional representation. An infor-
mal algorithm for this is described in [Ghallab et
al., 2004, section 2.6]. A conceptual flaw in this al-
gorithm (highlighted by the analysis of inconsistent
effects) will be briefly discussed in the conclusions
of this paper.

10 Type Information

Many planning domains include explicit type infor-
mation. In pddl the :typing requirement allows
the specification of typed variables in predicate and
operator declarations. In problem specifications, it
allows the assignment of constants or objects to
types. If nothing else, typing tends to greatly in-
crease the readability of a planning domain. How-
ever, it is not necessary for most planning algo-
rithms to work.

In this section we will show how type informa-
tion can be inferred from the operator descriptions
in the planning domain definition. If the planning
domain includes explicit type information the in-
ferred types can be used to perform a consistency
check, thus functioning as a knowledge engineering

tool. In any case, type information can be used
to simplify parts of the planning process. For ex-
ample, if the planner needs to propositionalize the
planning domain, type information can be used to
limit the number of possible values for variables, or
a ground backward searcher may use this informa-
tion to similar effect.

The formalism that follows is necessary to show
that the derived type system is maximally spe-
cific given the knowledge provided by the oper-
ators, that is, any type system that further sub-
divides a derived type must necessarily lead to a
search space that contains type inconsistent states.

10.1 Type Consistency

The simplest kind of type system often used in
planning is one in which the set of all constants
C used in the planning domain and problem is di-
vided into disjoint types T . That is, each type cor-
responds to a subset of all constants and each con-
stant belongs to exactly one type. This is the kind
of type system we will look at here.

Definition 1 (type partition) A type parti-
tion P is a tuple 〈C, T, τ〉 where:

• C is a finite set of n(C) ≥ 1 constant symbols
C = {c1, . . . , cn(C)},

• T is a set of n(T) ≤ n(C) types T =
{t1, . . . , tn(T)}, and

• τ : C → T is a function defining the type of a
given constant.

A type partition divides the set of all constants
that may occur in a planning problem into a set of
equivalence classes. The availability of a type par-
tition can be used to limit the space of world states
that may be searched by a planner. In general, a
world state in a planning domain can be any sub-
set of the powerset of the set of ground atoms over
predicates P with arguments from C.

Definition 2 (type function) Let P =
{P1, . . . , Pn(P)} be a set of n(P) predicate
symbols with associated arities a(Pi) and let
T = {t1, . . . , tn(T)} be a set of types. A
type function for predicates is a function

argP : P × N→ T

27

Distribution A: Approved for public release; distribution is unlimited.

which, for a given predicate symbol Pi and ar-
gument number 1 ≤ k ≤ a(Pi) gives the type
argP (Pi, k) ∈ T of that argument position.

This is the kind of type specification we find in
pddl domain definitions as part of the definition of
predicates used in the domain, provided that the
typing extension of pddl is used. The type func-
tion is defined by enumerating the types for all the
arguments of each predicate.

Definition 3 (type consistency) Let 〈C, T, τ〉
be a type partition. Let Pi ∈ P be a predicate sym-
bol and let c1, . . . , ca(Pi) ∈ C be constant symbols.
The ground first-order atom Pi(c1, . . . , ca(Pi)) is
type consistent iff τ(ck) = argP (Pi, k). A world
state is type consistent iff all its members are
type consistent.

Thus, for a given predicate Pi there are |C|a(Pi)

possible ground instances that may occur in world
states. Clearly, the set of type consistent world
states is a subset of the set of all world states. The
availability of a set of types can also be used to
limit the actions considered by a planner.

Definition 4 (type function) Let O =
{O1, . . . , On(O)} be a set of n(O) operator
names with associated arities a(Oi) and let
T = {t1, . . . , tn(T)} be a set of types. A
type function for operators is a function

argO : O × N→ T
which, for a given operator symbol Oi and ar-
gument number 1 ≤ k ≤ a(Oi) gives the type
argO(Oi, k) ∈ T of that argument position.

Again, this is exactly the kind of type specifica-
tion that may be provided in pddl where the func-
tion is defined by enumeration of all the arguments
with their types for each operator definition.

Definition 5 (type consistency) Let 〈C, T, τ〉
be a type partition. Let Oi(v1, . . . , va(Oi))
be a strips operator defined over variables
v1, . . . , va(Oi) with preconditions precs(Oi)
and effects effects(Oi), where each precondi-
tion/effect has the form Pj(vPj ,1, . . . , vPj ,a(Pj))
or ¬Pj(vPj ,1, . . . , vPj ,a(Pj)) for some predicate
Pj ∈ P . The operator Oi is type consistent iff:

• all the operator variables v1, . . . , va(Oi) are
mentioned in the positive preconditions of the
operator, and

• if vk = vPj ,l, i.e. the kth argument variable of
the operator is the same as the lth argument
variable of a precondition or effect, then the
types must also be the same: argO(Oi, k) =
argP (Pj , l).

The first condition is often required only im-
plicitly (see [Ghallab et al., 2004, chapter 4]) to
avoid the complication of “lifted” search in forward
search. We will use this condition shortly to show
that a type consistent system is closed.

Given a type partition 〈C, T, τ〉 and type func-
tions argP and argO, we can define a most gen-
eral state-transition system over all type consistent
states as follows:

Definition 6 (state-transition system Σ∗)
Let 〈C, T, τ〉 be a type partition. Let
P = {P1, . . . , Pn(P)} be a set of predicate
symbols with associated type function argP and let
O = {O1, . . . , On(O)} be a set of type consistent
operators. Then Σ∗ = (S∗, A∗, γ) is a (restricted)
state-transition system, where:

• S∗ is the powerset of the set of all type consis-
tent ground atoms with predicates from P and
arguments from C,

• A∗ is the set of all (type consistent) ground
instances of operators from O, and

• γ is the usual state transition function for
strips actions: γ(s, a) = (s− effects−(a))∪
effects+(a) iff action a is applicable in state
s1.

This state-transition system forms a super-
system to a state-transition system defined by a
planning problem containing a type consistent ini-
tial state, and a set of type consistent operator def-
initions, in the sense that the states of that system
(the reachable states from the initial states) must
be a subset of S∗ and the actions must be a subset
A∗. It is therefore interesting to observe that Σ∗ is
closed:

Proposition 1 (closed Σ∗) Let s ∈ S∗ be a type
consistent state, i.e. a type consistent set of ground
atoms. Let a ∈ A∗ be a type consistent action that

1See the definition of a strips operator in [Ghallab et
al., 2004, page 28] and the discussion of inconsistent effects
below.

28

Distribution A: Approved for public release; distribution is unlimited.

is applicable in s. Then the successor state γ(s, a)
is a type consistent state in S∗.

To show that the above is true, we need to show
that every atom in γ(s, a) is type consistent. Each
atom in γ(s, a) was either in the previous state, s,
in which case it was type consistent by definition,
or it was added as a positive effect. Since the action
is an applicable instance of a type consistent oper-
ator Oi there must be a substitution σ such that
σ(precs+(Oi)) ⊆ s. Furthermore, this substitution
grounds every operator variable because type con-
sistency requires all of them to occur in the positive
preconditions. Given the type consistency of s, all
arguments in σ(precs+(Oi)) must agree with argP .
Given the type consistency of Oi, all arguments of a
must agree with argO, and therefore so must the ef-
fects σ(effects(Oi)). Hence, all positive effects are
type consistent, meaning every element of γ(s, a)
must be type consistent. �

10.2 Derived Types

The above definitions assume that there is an un-
derlying type system that has been used to define
the planning domain and problems in a consistent
fashion. We shall continue to assume that such a
type system exists, but it may not have been explic-
itly specified in the pddl definition of the domain.
We shall now define a type system that is derived
from the operator descriptions in the planning do-
main.

Definition 7 (type name) Let O =
{O1, . . . , On(O)} be a set of strips operators.
Let P be the set of all the predicate symbols used
in all the operators. A type name is a pair
〈N, k〉 ∈ (P ∪O)× N.

A type name can be used to refer to a type in
a derived type system. There usually are multi-
ple names to refer to the same type. The basic
idea behind the derived types is to partition the
set of all type names into equivalence classes, and
then assign constants used in a planning problem
to different equivalence classes, thus treating each
equivalence class as a type.

Definition 8 (O-type) Let O = {O1, . . . , On(O)}
be a set of strips operators over operator vari-
ables v1, . . . , va(Oi) with conds(Oi) = precs(Oi)∪

effects(Oi) and all operator variables mentioned in
the positive preconditions. Let P be the set of all
the predicate symbols used in all the operators. An
O-type is a set of type names. Two type names
〈N1, i1〉 and 〈N2, i2〉 are in the same O-type, de-
noted 〈N1, i1〉 ≡O 〈N2, i2〉, iff one of the following
holds:

• N1(v1,1, . . . , v1,a(N1)) is an oper-
ator with precondition or effect
N2(v2,1, . . . , v2,a(N2)) ∈conds(N1) which
share a specific variable: v1,i1 = v2,i2 ,

• N2(v2,1, . . . , v2,a(N2)) is an oper-
ator with precondition or effect
N1(v1,1, . . . , v1,a(N1)) ∈conds(N2) which
share a specific variable: v1,i1 = v2,i2 , or

• there is a type name 〈N, j〉 such that 〈N, j〉 ≡O

〈N1, i1〉 and 〈N, j〉 ≡O 〈N2, i2〉.

Definition 9 (O-type partition) Let (si, g, O)
be a strips planning problem. Let C be the set of
all constants used in si. Let T = {t1, . . . , tn(T)}
be the set of O-types derived from the operators in
O. Then we can define the function τ : C → T as
follows:

τ(c) = ti : ∀R(c1, . . . , ca(R)) ∈ si :
(cj = c)⇒ 〈R, j〉 ∈ ti

Note that τ(c) is not necessarily well-defined for
every constant mentioned in the initial state, e.g. if
a constant is used in two relations that would indi-
cate different derived types (which rely only on the
operator descriptions). In this case the O-type par-
tition cannot be used as defined above. However, if
appropriate unions of O-types are taken then this
results in a new type partition for which τ(c) is
defined. In the worst case this will lead to a type
partition consisting of a single type. Given that this
approach is always possible, we shall now assume
that τ(c) is always defined.

Definition 10 Let T = {t1, . . . , tn(T)} be the set
of O-types for a given set of operators O and let
P = {P1, . . . , Pn(P)} be the predicates that occur
on operators from O. We can easily define type
functions argP and argO as follows:

argP (Pi, k) = ti : 〈Pi, k〉 ∈ ti and
argO(Oi, k) = ti : 〈Oi, k〉 ∈ ti

29

Distribution A: Approved for public release; distribution is unlimited.

Proposition 2 Let (si, g, O) be a strips planning
problem and let 〈C, T, τ〉 be the O-type partition de-
rived from this problem. Then every state that is
reachable from the initial state si is type consistent.

To show this we first show that the initial state
is type consistent. Since the definition of τ is based
on the argument positions in which they occur in
the initial state, this follows trivially.

Next we need to show that every action that is
an instance of an operator in O is type consistent.
All operator variables must be mentioned in the
positive preconditions according to the definition of
an O-type. Furthermore, if a precondition or effect
share a variable with the operator, these must have
the same type since ≡O puts them into the same
equivalence class.

Finally we can show that, if action a is applica-
ble in a type consistent state s, the resulting state
γ(s, a) must also be type consistent. Every atom
must come either from s in which case it must be
type consistent, or it comes from a positive effect,
which, given the type consistency of a means it
must also be type consistent. �

This shows that the type system derived from
the operator definitions is indeed useful as it cre-
ates a state space of type consistent states. How-
ever, the question that remains is whether it is the
best or even only type system. Clearly, there may
be other type systems that give us type consistent
state space. The system that consists just of a sin-
gle type is a trivial example. A better type system
would divide the set of constants into more types
though, as this reduces the size of a type consistent
state space. We will now show that the above type
system is maximally specific given the knowledge
provided by the operators.

Theorem 1 Let (si, g, O) be a strips planning
problem and let 〈C, T, τ〉 be the O-type partition de-
rived from this problem. If two constants c1 and c2

have the same type τ(c1) = τ(c2) then they must
have the same type in every type partition that cre-
ates a type consistent search space.

The first step towards showing that the above
holds is the insight that operators can be used
to constrain types in both directions, forward and
backward. If an operator variable vi appears in a
precondition and an effect, then the type of the po-
sition of the predicate in the effect must be subset

of the type of the position in the precondition or
the application of the operator may lead to a state
that is not type consistent. Since types are defined
by an equivalence relation, however, the two types
must actually be the same type. Hence the type in
the effect also constrains the type in the precondi-
tion.

Now, for two type names to be in the
same O-type, there must be a connecting chain
〈R0O1R1 . . . OnRn〉 of alternating first order liter-
als and operators such that Ri−1 and Ri are condi-
tions of Oi which share an operator variable as the
ji−1th and jith argument respectively. The vari-
able that is shared may vary along the chain. For
each step along the chain, if a constant may occur
in the ji−1th position in Ri−1 it may also occur
in the jith position in Ri. Thus, there may be two
type consistent states that are connected by Oi and
which contain instances of Ri−1 and Ri. Since both
states are type consistent, both instances must be
type consistent, too.

Now let us assume that c1 appears as j0th argu-
ment in R0 and let c2 appears as jnth argument in
Rn. Furthermore, let us assume these exists a type
partition that assigns c1 and c2 to different types.
Since c1 is the j0th argument in R0 there may be
another state in which c1 appears as jnth argument
in Rn. Thus it appears in the same position of the
same predicate as c2, which means it must have the
same type to be type consistent. �

10.3 An Efficient Algorithm

The algorithm to derive domain types td treats
types as sets of predicate and argument-number
pairs. That is td ⊆ 2P×N. Each domain type td
corresponds to exactly one type t ∈ T . The only
argument taken by the algorithm is the set of op-
erator definitions O.
function extract-types(O)

pTypes← ∅
vTypes← ∅
for every op ∈ O do

extract-types(op, pTypes, vTypes)
return pTypes

The variable pTypes contains the O-types that
have been discovered so far. Initially there are no

30

Distribution A: Approved for public release; distribution is unlimited.

O-types and the set is empty. vTypes is a set of
pairs of variables (used in operator definitions) and
O-types, best implemented as a map and also ini-
tially empty. The procedure then analyzes each
operator in the given set, thereby building up the
type system incrementally.

function extract-types(op, pTypes, vTypes)
for every p ∈ pre(op) ∪ eff(op) do

for i = 1 to a(p) do
tpi ← td ∈ pTypes : 〈rel(p), i〉 ∈ td
〈v, tv〉 ← vt ∈ vTypes : ∃td : vt = 〈arg(i, p), td〉
if undef(〈v, tv〉) do

if undef(tpi) do
tpi ← {〈rel(p), i〉}
pTypes← pTypes ∪ tpi

vTypes← vTypes ∪ 〈arg(i, p), tpi〉
else

if undef(tpi) do
tv ← tv ∪ {〈rel(p), i〉}

else
merge-types(tv, tpi, pTypes, vTypes)

The analysis of a given operator goes through
every precondition and effect of the operator, look-
ing at every argument position in turn. The next
steps of the algorithm depend on whether the
predicate-position combination has been used be-
fore (in which case it will appear in the pTypes)
and whether the variable at that position has been
used before (in which case it will be a key in the
vTypes). If only one or neither have been used, the
algorithm simply adds the relevant elements to the
pTypes and the vTypes. If both have been used it
may be necessary to merge the respective O-types.

function merge-types(t1, t2, pTypes, vTypes)
if t1 = t2 do

return
pTypes← pTypes− {t1, t2}
tnew ← t1 ∪ t2
pTypes← pTypes ∪ {tnew}
for every 〈v, tv〉 ∈ vTypes do

if (tv = t1) ∨ (tv = t2) do
vTypes← vTypes− 〈v, tv〉
vTypes← vTypes + 〈v, tnew〉

Of course, no action is required if the type of

the variable and the type for the predicate-position
combination is the same. Otherwise we replace
the two sets representing the (previously different)
types in pTypes with a new type that is the union
of the two sets. Also we need to update the pairs
in vTypes to ensure that keys that previously had
one of the now removed types as value will now get
the new type as their new value.

It is easy to see that the algorithm runs in poly-
nomial time. Furthermore, the analysis performed
by the algorithm uses only the operator descrip-
tions, and thus its run time does not depend on
the problem size.

This algorithm shares the input with TIM [Fox
and Long, 1998], namely the operator specifica-
tions. Both algorithms use the argument positions
in which parameters occur in preconditions and ef-
fects as the basis for their analysis. TIM uses this
information to construct a set of finite state ma-
chines to model transitions of objects, whereas our
algorithm builds the equivalence classes directly.
The result produced by TIM is a hierarchical type
system that is used to derive state invariants. In
contrast, the type system derived by our algorithm
is flat, meaning it may be less discriminating than
the structure derived by TIM. However, we could
show that the types derived by our algorithm are
maximally specific for given operator descriptions.
In addition, a flat type system can be used to enrich
the operator definitions explicitly by simply adding
unary predicates as type preconditions.

10.4 Evaluation

To evaluate the algorithm we have applied it to a
small number of planning domains. To avoid any
bias we used only planning domains that were avail-
able from third parties, mostly from the interna-
tional planning competition. Since the algorithm
works on domains and the results have to be in-
terpreted manually only a limited number of ex-
periments was possible. Random domains are not
suitable as they cannot be expected to encode an
implicit type system. The algorithm has been used
on random domains, but this did not result in any
useful insights.

A planning domain on which the algorithm has
been used is the DWR domain [Ghallab et al.,
2004]. In this domain types are defined explicitly,
so it was possible to verify consistency with the

31

Distribution A: Approved for public release; distribution is unlimited.

given types. The algorithm produced the following,
listing the argument positions in predicates where
they are used (the pTypes):

type: [loaded-0, unloaded-0, at-0]
type: [attached-0, top-1, in-1]
type: [occupied-0, attached-1, belong-1,
adjacent-1, adjacent-0, at-1]

type: [belong-0, holding-0, empty-0]
type: [loaded-1, holding-1, on-1, on-0,
in-0, top-0]

The first type states that it is used as the first ar-
gument in the loaded, unloaded and at predicate.
This corresponds exactly to the robot type in the
pddl specification of the domain. Similarly, the
other types correspond to pile, location, crane
and container, in this order. The main difference
is that the derived types do not have intelligible
names.

The other domains that were used for testing did
not come with type information specified in the
same way as the DWR domain. However, they
all use unary predicates to add type information
to the preconditions (but not every unary predi-
cate is a type). The domains used are the follow-
ing strips domains from the international plan-
ning competition: movie, gripper, logistics,
mystery, mprime and grid. The algorithm derives
between 3 and 5 types for each of these domains
which appears consistent with what the domain au-
thors had in mind. The only domain that stands
out is the first, in which each predicate has its own
type. However this appears to be appropriate for
this very simple domain.

11 Static and Fluent Rela-
tions

Another domain feature that is useful for the analy-
sis of planning domains concerns the relations that
are used in the definition of the operators. The set
of predicates used here can be divided into static (or
rigid) relations and fluent (or dynamic) relations,
depending on whether atoms using this predicate
can change their truth value from state to state.

Definition 11 (static/fluent relation) Let
O = {O1, . . . , On(O)} be a set of operators and let

P = {P1, . . . , Pn(P)} be a set of all the predicate
symbols that occur in these operators. A predicate
Pi ∈ P is fluent iff there is an operator Oj ∈ O
that has an effect that uses the predicate Pi.
Otherwise the predicate is static.

The algorithm for computing the sets of fluent
and static predicate symbols is trivial and hence,
we will not list it here.

There are at least two ways in which this infor-
mation can be used in the validation of planning
problems. Firstly, if the domain definition language
allowed the domain author to specify whether a re-
lation is static or fluent then this could be verified
when the domain is parsed. This might highlight
problems with the domain. Secondly, in a planning
problem that uses additional relations these could
be highlighted or simply removed from the initial
state.

The computation of static and fluent relations
has been tested on the same domains as the derived
types. As is to be expected, nothing interesting can
be learned from this experiment.

12 Inconsistent Effects

In a strips-style operator definition the effects are
specified as and add- and delete-lists consisting of
a set of (function-free) first-order atoms, or a set
of first-order literals where positive elements corre-
spond to the add-list and negative elements corre-
spond to the delete-list. Normally, the definition
of an operator permits potentially inconsistent ef-
fects, i.e. a positive and a negative effect may be
complementary.

12.1 Operators

Definition 12 (potential inconsistency) Let
O be a planning operator with positive effects
ep
1, . . . , e

p
n(ep) and negative effects en

1 , . . . , en
n(en),

where each positive/negative effect is a first-order
atom. O has potentially inconsistent effects
iff O has a positive effect ep

i and a negative effect
en
j for which there exists a substitution σ such that

σ(ep
i) = σ(en

j).

It is fairly common for planning domains to de-
fine operators with potentially inconsistent effects.

32

Distribution A: Approved for public release; distribution is unlimited.

For example, the move operator in the DWR do-
main is defined as follows:

(:action move

:parameters (?r ?fr ?to)

:precondition (and (adjacent ?fr ?to)

(at ?r ?fr) (not (occupied ?to)))

:effect (and (at ?r ?to) (occupied ?to)

(not (occupied ?fr)) (not (at ?r ?fr))))

This operator has a positive effect (at ?r ?to)
and a negative effect (at ?r ?fr). These two ef-
fects are unifiable and represent a potential incon-
sistency. Since this is a common feature in plan-
ning domains there is no need to raise this to the
domain author. Effects that are necessarily incon-
sistent may be more critical.

Definition 13 (necessary inconsistency)
Let O be a planning operator with positive
effects Ep = {ep

1, . . . , e
p
n(ep)} and negative

effects En = {en
1 , . . . , en

n(en)}, where each pos-
itive/negative effect is a first-order atom. O has
necessarily inconsistent effects iff O has a
positive effect ep

i and a negative effect en
j such that

ep
i = en

j .

None of the domains used in the experi-
ments above specified an operator with nec-
essarily inconsistent effects. Given the def-
inition of the state-transition function for
strips operators [Ghallab et al., 2004] as

γ(s, a) = (s− En) ∪ Ep

it should be clear that the negative effect en
j can

be omitted from the operator description without
changing the set of reachable states. If en

j /∈ s
then its removal from s will not change s, and the
addition of ep

i ensures that en
j ∈ γ(s, a) because

ep
i = en

j . If en
j ∈ s it will be removed in γ(s, a),

but it will subsequently be re-added. Thus, the
presence of the negative effect does not change the
range of the state-transition function.

From a knowledge engineering perspective this
means that an operator with necessarily incon-
sistent effects indicates a problem and should be
raised to the domain author. However, this is only
true for simple strips operators where actions are
instantaneous and thus, all effects happen simulta-
neously. If effects are permitted at different time
points then only those that are necessarily incon-
sistent at the same time point must be considered
a problem.

12.2 Actions

Since actions are ground instances of operators,
there is no need to distinguish between necessar-
ily and potentially inconsistent effects. All effects
must be ground for actions and therefore incon-
sistent effects are always necessarily inconsistent.
Even if necessarily inconsistent operators are not
permitted in a domain, actions with inconsistent ef-
fects may still occur as instances of operators with
potentially inconsistent effects.

Whether it is desirable for the planner to con-
sider such actions depends on the other effects of
the action. For example, in the DWR domain no
action with inconsistent effects needs to be consid-
ered. However, if an action has side effects then it
may make sense to permit such actions. For exam-
ple, circling an aircraft in a holding pattern does
not change the location of the aircraft, but it does
reduce the fuel level. If such side effects are impor-
tant actions with inconsistent effects may need to
be permitted. And, of course, every action has the
side effect of taking up a step in a plan.

If actions with inconsistent effects are considered
by the planner, this may lead to further complica-
tions. This is because the definition of the state-
transition function first subtracts negative effects
from a state and then adds positive effects. For
actions that have no inconsistent effects this order
is irrelevant. However, if actions with inconsistent
effects are permitted the result may be surprising.
For example, returning to the move operator in the
DWR domain, this has been defined with a pos-
itive effect (occupied ?to) and a negative effect
(occupied ?fr). Thus, the action (move r loc
loc) will result in a state in which (occupied loc)
holds. Now suppose the domain had been defined
using the predicate free instead of occupied. In
this case the result of (move r loc loc) would
result in a state in which (free loc) holds. This
problem occurs only with inconsistent effects.

None of the domains used in the tests above
require actions with inconsistent effects and thus,
they can be ignored by the planner. The following
algorithm can be used to find the applicable actions
(without inconsistent effects) in a given state.

33

Distribution A: Approved for public release; distribution is unlimited.

function addApplicables(A, o, p, σ, s)
if not empty(p+) then

let pnext ∈ p
for every sp ∈ s do

σ′ ← unify(σ(pnext), sp)
if valid(σ′) then

addApplicables(A, o, p− pnext, σ
′, s)

else
for every pnext ∈ p− do

if falsifies(s, σ(pnext)) then return
for every ep ∈ effects+(o) do

for every en ∈ effects−(o) do
if ep = en then return

A← A + σ(o)

The algorithm adds all instances of operator o
that are applicable in state s to the set of actions
A. The parameter p represents the remaining pre-
conditions (initially empty) and a substitution σ
(also initially empty) will be built up by the algo-
rithm. It first deals with the remaining positive
preconditions and uses those to construct the sub-
stitution for all the parameters of the operators.
Note that we require an operator to mention all
its parameters in the positive preconditions. When
the positive preconditions have been tested, the al-
gorithm checks the negative preconditions under σ
which must now be fully ground. Finally, the algo-
rithm tests for inconsistent effects by doing a pair-
wise comparison between positive and negative ef-
fects. This algorithm can also be used to generate
the actions for the next action layer in a planning
graph. A goal regression version is slightly different
as it is no longer guaranteed that all the operator
parameters will be bound after the unification with
a goal (and possibly static preconditions).

13 Reversible Actions

A common feature in many planning domains (and
in many classic search problems) is that they con-
tain actions that can be reversed by applying an-
other action. There is usually no need to consider
such actions during the search process.

13.1 Reversible Operators

The idea here is to apply the concept of reversibil-
ity to operators: an operator may be reversed by

another operator (or the same operator), possibly
after a suitable substitution of variables occurring
as parameters in the operator definition. Note that
this definition is somewhat narrow as it demands
this pattern to be consistent across all instances of
the two operators, i.e. it excludes the possibility of
an operator sometimes being reversed by one oper-
ator, and sometimes by another, depending on the
values of the parameters.

Definition 14 (reversing operators) An ac-
tion a that is applicable in a state s is reversed by
an action a′ if the state that results from applying
the sequence 〈aa′〉 in s results in s, i.e. the state
remains unchanged. An operator O is reversed
by an operator O′ under substitution σ′ iff for
every action a = σ(O) that is an instance of O:

• if a is applicable in a state s then a′ =
σ(σ′(O′)) is applicable in γ(s, a) and

• γ(γ(s, a), a′) = s.

For example, consider the (move ?r ?l1 ?l2)
operator from the DWR domain. This can be re-
versed by another move operation with different
parameters, as defined by the substitution σ′ =
{?l1←?l2,?l2←?l1}, i.e. (move ?r ?l1 ?l2) is
reversed by σ′((move ?r ?l1 ?l2)) =(move ?r
?l2 ?l1).

While this definition captures the idea of a re-
versing operator, it is not very useful from a com-
putational point of view. Another way to avoid
exploring states that are the result of the applica-
tion of an action followed by its reverse action is
to store all states in a hash table and test whether
the new state has been encountered before, an ap-
proach that is far more general than just testing for
reversing actions. Computationally, it is roughly as
expensive as the test suggested by the above defi-
nition. The key here is that both are state specific.
A definition of reversibility that does not depend
on the state in which an action is applied would be
better.

From a domain author’s perspective, it is often
possible to specify which operators can be used to
reverse another operator, as we have shown in the
DWR move example above. If this information
is available during search then there is no need
to apply the reverse action, generate the state,
and compare it to the previous state. Instead

34

Distribution A: Approved for public release; distribution is unlimited.

a relatively simple substitution test would suffice:
a′ = σ(σ′(O′)).

Proposition 3 Let O1 be an operator with positive
effects Ep

1 and negative effects En
1 that is reversed

by O2 with positive effects Ep
2 and negative effects

En
2 under substitution σ′. Then the two sets of pos-

itive/negative effects must cancel each other:
Ep

1 = σ′(En
2) and En

1 = σ′(Ep
2)

Suppose there is a positive effect in Ep
1 that is not

in σ′(En
2). Now suppose an instance of O was ap-

plied in a state in which the effect in question does
not already hold. The effect would then be added
by the instance of O but it would not be deleted
by the reversing action, and thus the original state
and the state resulting from the two actions in se-
quence would not be the same. A similar argument
holds for an effect in En

1 that is not in σ′(Ep
2). �

This means we can let the domain author spec-
ify reversing operators and then use the above nec-
essary criterion for validation. Or we could treat
the above criterion as sufficient and thus exclude
a portion of the search space. This may lead to
an incompleteness in the search, but the domains
we have used for our evaluation do not show this
problem.

13.2 Unique Reversibility

In fact we have made an even stronger assumption
to carry out some experiments with the domains
mentioned above: we have assumed that there is at
most one operator that reverses a given operator.
We have then, for each domain, done a pairwise
test on all the operators defined in the domain to
see whether the necessary criterion holds. This re-
sulted in discovering that the move operator can be
reversed by itself with a substitution automatically
derived from the operator definition, and similarly
it discovered the reversibility between the take and
put operators and the load and unload operators in
the DWR domain.

Perhaps surprisingly, the unique reversibility was
not given for all domains. The logistics domain
contains load and unload operators for trucks and
airplanes. These are specified as four distinct op-
erators. However, in terms of their effects the two
load operators and the two unload operators can-
not be distinguished. The only difference lies in

the preconditions where the ?truck parameter is
required to be a truck and the ?airplane parame-
ter is required to be an airplane.

This result can be interpreted in two ways: one
could argue that the necessary condition may not
be used as sufficient in this domain. Or one could
argue that this domain contains redundancy that
can be removed by merging the two load and unload
operators, which would not change the set of reach-
able states in this example but means the planner
has fewer actions to consider. Either way, testing
for the necessary reversibility condition has high-
lighted this domain feature.

14 Communicating Plans:
Methods, Assumptions,
and Procedures

Most of the research in AI planning has focussed on
algorithms for the efficient discovery of plans that
solve a given planning problem. In this work we
are not interested in this classical problem, but in
the question how an agent framework can support
the distributed execution of plans. This is closely
intertwined with the classic planning problem, of
course, when execution fails and the plan needs to
be modified.

The remainder of this report is structured as
follows. In the next section we shall give a brief
overview of the two approaches that have been un-
dertaken to provide the foundation for meaningful
agent communication. Such communication is re-
quired to manage the successful sharing and execu-
tion of plans amongst a group of distributed agents.
This will define the message structure, communica-
tive acts, and interaction protocols for agent collab-
oration. We will then extend the protocols specif-
ically to support distributed plan execution. This
will be followed by a discussion on plan failure and
how this can be handled.

15 Background: Agent Com-
munication

Meaningful agent communication is a difficult prob-
lem that has been addressed in agent research by
two major efforts: the Knowledge Sharing Effort

35

Distribution A: Approved for public release; distribution is unlimited.

(KSE) and the Foundation for Intelligent Physical
Agents (FIPA). Both approaches rely on the exis-
tence of a transport layer that allows the exchange
of messages between agents. At this layer a mes-
sage is a stream of bytes that have no pre-defined
meaning. This is sufficient for many applications
in which the software developer knows the mean-
ing of these bytes and the correct behavior can be
hard-coded into the software. Such software would
normally not be considered an agent. For software
to be considered an agent it should be capable of
communicating in a semantically rich, that is, a
meaningful language, and for an agent to be capa-
ble of meaningful communication, the meaning has
to exist not only in the software developer’s head,
but it has to be somehow encoded in the system of
communicating agents.

The first step towards encoding meaning in an
agent communication language usually consists of
the definition of an ontology that defines the terms
that can be used for communication. The sym-
bols used to represent these terms have meaning
because they are related to other terms through a
set of pre-defined relations that constrain the pos-
sible interpretations. Thus, an ontology that con-
tains only one symbol has no meaning as it is en-
tirely unconstrained. On the other hand an on-
tology that contains many symbols and relations
between them does encode meaning for these sym-
bols. For agent communication, if two agents refer
to the same ontology, it can be assumed that they
are using the symbols in their messages with the
same meaning. An ontology can be seen as provid-
ing the vocabulary for meaningful communication
and the conceptual framework described in the first
report constitutes part of such an ontology, namely
one focussed on plans.

A shared ontology is necessary, but not suffi-
cient for meaningful agent communication. To form
meaningful statements it is necessary to define a set
of grammatical rules that define how the symbols
from an ontology can be combined to form more
complex structures. Furthermore, a formal seman-
tics is needed to define what exactly it means to
put certain symbols together in a certain way. To-
gether, syntax and semantics define a formal lan-
guage that can be used for meaningful agent com-
munication. While an ontology is always finite,
such a language usually allows for an infinite num-
ber of statements to be formed, making it possible

to express an infinite number of facts, or plans.
An ontology and a formal language are still

not sufficient for meaningful agent communication
though. Meaningful agent communication also re-
quires agent messages to encode modalities. For ex-
ample, an agent might have a fact in its knowledge
base and it can send this as a message to another
agent, but what is the receiving agent meant to do
with this message. Is the sender telling it about a
fact it believes, or is it asking whether the receiv-
ing agent believes the content of the message. If the
content is a plan, is the sender asking the receiver
to execute the plan, or should it evaluate the plan
and give feedback, or is it to refine the plan plan
with local knowledge into a more detailed plan?
The modalities required to answer these questions
are usually defined as performatives that describe
communicative acts and form part of an agent com-
munication message. Statements describing factual
knowledge or plans (built using the ontology and
formal language) are usually used at the content
level, i.e. they provide the object of a message us-
ing a given performative.

We will now look at the performatives defined in
the two efforts mentioned above, KSE and FIPA.
More specifically, we will look at the performatives
they define that can be used to support plan exe-
cution and agent communication about plans.

15.1 Knowledge Sharing and KQML

In the Knowledge Sharing Effort, the language
for expressing ontologies is called Ontolingua, and
the formal language for representing content is the
Knowledge Interchange Format (KIF). The lan-
guage for expressing complete agent communica-
tion messages based on different performatives and
containing content in KIF (or some other content
language) is the Knowledge Query and Manipula-
tion Language (KQML) [Labrou and Finin, 1997].
Before we look at the performatives defined in
KQML, we shall have a brief look at the structure
of a KQML message. This will clarify the relation
between a KQML message and its content, which
is not limited to KIF, but could also be expressed
in a different language such as a CPR/BDI-based
plan representation.

In the KSE framework, agents can send messages
to each other and KQML is a standard that defines
the syntax of a single message. As the language is

36

Distribution A: Approved for public release; distribution is unlimited.

based on a LISP-like syntax, a message is a list of
symbols surrounded by brackets:

<message> ::= (<performative>
{ <keyword> <value>}*)

The first element in this list is the performative
that defines what type of communicative act this
message represents. The performative describes
what the sender wants the receiver to do with the
content. If the content is factual, for example, the
sender may use the tell performative to indicate
that the receiver should (from now on) believe the
given fact. If the performative was ask, the sender
will expect a reply indicating whether the receiver
believes the given fact. If the content is a plan a
different set of performatives may be used, e.g. to
tell the receiver to execute, evaluate, or refine the
given plan.

The remainder of a KQML message are alternat-
ing keywords and values. KQML defines a number
of keywords that can be used in a message:

• :sender: the sender of this message;

• :receiver: the receiver of this message;

• :from: the original sender of a forwarded mes-
sage;

• :to: the final receiver of a forwarded message;

• :in-reply-to: a label that allows to tie this
message to a previous message;

• :reply-with: a label that allows to tie this
message to a future message;

• :language: the name of the representation
language used in the content;

• :ontology: the name of the ontology used in
the content;

• :content: the content with respect to which
this performative is applied.

The first four keywords are used to identify the
agents participating in the communication. The
next two can be used to put this message into a
larger context: a conversation consisting of multi-
ple messages.

For the present discussion the last three keywords
are the most relevant. What KQML provides here

is a mechanism that allows for the plugging in of a
different language for the content, that is, for the
direct object of the communicative act. For exam-
ple, if the message is about a plan, this plan can
be sent as the content of a message. The ontol-
ogy explicitly references the set of terms that will
be used in the content, which defines a meaning-
ful vocabulary. In a planning context this could be
the CPR/BDI ontology. The language explicitly
specifies the formal language used to represent the
content. This could be an XML-based language
or a LISP-like syntax2, for example. If the mes-
sage was about factual information, the content
language would presumably have to be a different
language, e.g. KIF.

To summarize, a KQML message consists of a
performative defining the modality of the message
and a set of keyword-value pairs defining to agents
involved, references to the context, and the content
of the message which can be given in an explic-
itly specified representation language that is not
defined as part of KQML.

15.1.1 Performatives

Given our focus on distributed planning and execu-
tion, we are most concerned with agent communi-
cation where the content of a message is a plan, or
at least activity-related. We shall now have a look
at the performatives defined in KQML to see which
communicative acts related to distributed planning
and execution are available in this language. The
complete list of performatives defined in KQML is
given in Appendix A. These performatives can be
divided into three groups, depending on the type
of objects (the content) the communicative acts are
about:

• Messages about facts: Performatives from
this group allow agents to interact with each
other’s knowledge, either telling them about
facts that they believe to hold, or asking them
about facts. If the answer consists of many
parts, it can be streamed rather than sent in
one large message.

2While the syntax of the content language is not con-
strained in KQML, the problem of parsing a complete mes-
sage means that it must be possible to at least recognize the
end of the content somehow.

37

Distribution A: Approved for public release; distribution is unlimited.

• Messages about activities: Performatives from
this group allow agents to ask each other to
achieve given goals. The achievement clearly
involves the execution of activity, although this
is not explicitly mentioned in the message.
Furthermore, since the content of the message
is a goal, the representation of plans is not re-
quired.

• Messages about capabilities: Performatives
from this group allow agents firstly to register
capabilities with a central capability broker,
and secondly to find agents that have required
capabilities. The broker may then manage the
application of a capability.

The first set of performatives is not activity-
related at all and can be ignored for the present
discussion.

The second set indirectly deals with activities.
With the achieve performative the sender asks the
receiver “to want to try to make the content true
of the system”. We shall interpret this as the set-
ting of a goal in the classical planning sense, i.e.
the receiver should come up with and execute a
plan that will achieve said goal in the world state.
Presumably this will require the receiver to per-
form some actions. However, the actions them-
selves are not subject to agent communication in
KQML. The other performative that relates to ac-
tivity is unachieve, which should only be used after
an achieve relating to the same goal. From a plan-
ning perspective this could be the same as another
achieve message with a negative goal. achieve
and unachieve are the only performatives dealing
with goals.

The third set can be used for capability broker-
ing. The central performative here is advertise
with which an agent can announce that it is capa-
ble of processing a given type of message. While
capabilities in general deal with activities, a capa-
bility advertisement in KQML only describes the
message type that can be processed, i.e. the con-
tent will itself be another KQML message and not
an activity or a plan. Thus, the performatives from
this set cannot be considered to be activity-related
in KQML.

15.1.2 Protocols

Messages between agents are intended to appear as
part of a dialogue or a larger communication struc-
ture. A protocol is such a structure and it can be
described as a communication plan schema, i.e. all
the actions in the plan schema are communication
actions using the KQML performatives. Protocols
are schemata in the sense that an actual communi-
cation represents an instantiation of the schema.

While the KQML specification describes the con-
text in which certain message types may occur,
there is no formal specification that describes the
interactions that may take place.

15.2 The FIPA Agent Communica-
tion Language

The Foundation for Intelligent Physical Agents
(FIPA) has proposed an alternative standard for
an Agent Communication Language (ACL). As for
KQML, we shall first look at the message structure
defined in FIPA ACL and then the set of performa-
tives defined in this standard, focussing on those
that deal with activity management.

15.2.1 Message Structure

The structure of a FIPA ACL message3 is very
similar to that proposed in KQML. Each message
must have a performative that describes the type of
communicative act the message represents. The re-
mainder of the message contains fields for describ-
ing the participants in the communication, tying
the message into a conversation consisting of mul-
tiple messages, and the actual content of the mes-
sage. In detail, a FIPA ACL message contains:

• performative: denotes the type of the com-
municative act of the ACL message;

• sender: denotes the identity of the sender of
the message, that is, the name of the agent of
the communicative act;

• receiver: denotes the identity of the intended
recipients of the message;

3See http://www.fipa.org/repository/standardspecs.html
for the set of documents describing the FIPA standard.

38

Distribution A: Approved for public release; distribution is unlimited.

• reply-to: indicates that subsequent messages
in this conversation thread are to be directed
to the agent named in the reply-to parameter,
instead of to the agent named in the sender
parameter;

• content: denotes the content of the message;
equivalently denotes the object of the action:
the meaning of the content of any ACL mes-
sage is intended to be interpreted by the re-
ceiver of the message;

• language: denotes the language in which the
content parameter is expressed;

• encoding: denotes the specific encoding of the
content language expression;

• ontology: denotes the ontology(s) used to
give a meaning to the symbols in the content
expression;

• protocol: denotes the interaction protocol
that the sending agent is employing with this
ACL message;

• conversation-id: introduces an expression
(a conversation identifier) which is used to
identify the ongoing sequence of communica-
tive acts that together form a conversation;

• reply-with: introduces an expression that
will be used by the responding agent to iden-
tify this message;

• in-reply-to: denotes an expression that ref-
erences an earlier action to which this message
is a reply;

• reply-by: denotes a time and/or date expres-
sion which indicates the latest time by which
the sending agent would like to receive a reply.

Like KQML, the fields for describing the partici-
pants include the sender and receiver. The fields to
do with message forwarding are not supported in
FIPA. Instead, the reply-to field can be used to
specify a different response address. Conceptually,
these differences are hardly significant.

Similarly, the fields for conversation management
are not fundamentally different: two additional
fields are defined in FIPA, conversation-id and
reply-by, where the latter allows the specification

of a deadline at the envelope level, something that
has to be done as part of the message content in
KQML.

Finally, the language used for the content is not
defined in the standard and various fields in a mes-
sage specify what formal structure is used. Again,
the ontology and the formal language can be named
explicitly. In addition, FIPA ACL allows the ex-
plicit naming of the protocol that underlies the con-
version to which a message belongs.

15.2.2 Performatives

The complete list of performatives defined in FIPA
ACL is given in Appendix B. These can be roughly
divided into three sets based on the type of content
and the protocols these performatives are expected
to be used in:

• Messages about facts: Performatives from this
group are concerned with knowledge manipu-
lation where each agent has its own knowledge-
base and agent communication is used to
update and query information across agent
knowledge-bases.

• Message about collaboration: Performatives
from this group can be used to organize a col-
laboration between agents. Essentially, these
performatives implement the Contract Net
protocol [Smith, 1980].

• Messages about communication management:
Performatives from this group allow message
forwarding and a single performative that can
be used to indicate that a received message was
not understood.

As for KQML, the first set deals with factual
knowledge and not with activity. The content of
messages using these performatives could again be
expressed in KIF or some other logical language.

The second set corresponds to the brokering-
related performatives in KQML. However, whereas
KQML used itself as a content language (defining
the type of message that can be processed), FIPA
ACL is based on the Contract Net protocol in which
the central element is a proposal for work. Thus,
the content of most messages must be about such a
proposal. Unfortunately neither the document that
specifies the performatives nor the document that

39

Distribution A: Approved for public release; distribution is unlimited.

defines the contract net interaction protocol defines
what a proposal should look like or what type of
representation might be used here4. Two options,
at least from an AI planning perspective, would be
to use a goal-based or a task-based representation,
but this is only speculation. Another issue with
the performatives provided by FIPA is that they
focus on the phase leading up to a collaboration,
but provide little for managing the distributed ac-
tivities that implement the collaboration. No per-
formatives related to plan sharing and execution
are defined in FIPA ACL.

The third set of performatives are not related to
activities and thus not of interest to us.

15.2.3 Protocols

An area in which the FIPA standard is clearly more
advanced than the KSE specifications is the set of
interaction protocols that define how single mes-
sages can be used in conversations. FIPA defines
the following interaction protocols in detail:

• FIPA Request Interaction Protocol Specifica-
tion: allows one agent to request another to
perform some action.

• FIPA Query Interaction Protocol Specifica-
tion: allows one agent to request to perform
some kind of action on another agent.

• FIPA Request When Interaction Protocol
Specification: allows an agent to request that
the receiver perform some action at the time a
given precondition becomes true.

• FIPA Contract Net Interaction Protocol Spec-
ification: a minor modification of the original
contract net IP pattern in that it adds rejec-
tion and confirmation communicative acts.

• FIPA Iterated Contract Net Interaction Pro-
tocol Specification: an extension of the basic
FIPA Contract Net IP, but it differs by allow-
ing multi-round iterative bidding.

• FIPA Brokering Interaction Protocol Specifi-
cation: designed to support capability broker-
age interactions in mediated systems and in
multi-agent systems.

4FIPA also includes a specification for a content lan-
guage, the FIPA SL content language, but it is not obvious
how a protocol might be expressed in this language.

• FIPA Recruiting Interaction Protocol Specifi-
cation: designed to support recruiting interac-
tions in mediated systems and in multi-agent
systems.

• FIPA Subscribe Interaction Protocol Specifi-
cation: allows an agent to request a receiv-
ing agent to perform an action on subscription
and subsequently when the referenced object
changes.

• FIPA Propose Interaction Protocol Specifica-
tion: allows an agent to propose to receiving
agents that the initiator will do the actions
described in the propose communicative act
when the receiving agent accepts the proposal.

A number of these protocols deal with capabil-
ity brokering and are thus relevant to distributed
planning and plan execution. However, only one
of the protocols deals directly with the distributed
execution of activity, namely the FIPA Request in-
teraction protocol. An overview of the messages to
be exchanged as part of this protocol is given in
figure 12.

The interaction protocol involves two agents, the
initiator that wants another agent to execute some
action, and the so-called participant that executes
the action. The first step in the interaction proto-
col consists of the initiator sending a request mes-
sage to the participant, that is, a message with the
request performative and an action as the content
of the message. What language the action is to be
described in is not specified in the protocol and the
idea is, of course, that the outer layer can encapsu-
late different content languages.

The participant has to respond to this message
with either a refuse or an accept message. In the
former case the protocol is terminated and no fur-
ther messages will be exchanged. In the latter case
the interaction continues. Presumably, the partic-
ipant will execute the requested action and then
send a message indicating the status of the action
to the initiator. Depending on the outcome of the
action, the message can be a failure message or
an inform message. This message terminates the
interaction.

This basic protocol only shows the flow of mes-
sages when things go according to plan, so to speak.
Either participant may also terminate the proto-
col when they receive a message they cannot pro-

40

Distribution A: Approved for public release; distribution is unlimited.

Figure 12: FIPA Request Interaction Protocol

0

→ command α

1 2

5

accept →reject →

3 4

started α→renege α→

completed α→

achieved α e →

achieved α e →pe
rf

or
m

in
g

Figure 13: Protocol for Activity Execution

cess, by sending a not-understood message. Fur-
thermore, the initiator can send a cancel message,
asking the participant to abandon execution of the
action. How this is possible depends on the action,
of course.

16 Agent Communication for
Plan Execution

In this section we will extend the basic request in-
teraction protocol defined in FIPA to define more
complex protocols that allow for more detailed con-
trol of the execution, and which build on some of
the features of the CPR/BDI representation that
may be used at the content level.

16.1 Simple Action Execution

The first protocol we have developed is a slightly
more complex version of the FIPA request interac-
tion protocol that differs from the FIPA protocol
in two ways: firstly, it allows the executing agent
to renege after it has accepted, and secondly, the
protocol is more detailed with respect to the in-
formation that indicates the status of execution to
the requester. A concise overview of the protocol
is shown in figure 13.

This protocol is shown here from the perspec-
tive of the action-executing agent. A correspond-
ing version for the requester would look very sim-
ilar. Nodes in this graph represent internal states
of the agent with respect to the protocol. Arcs rep-

41

Distribution A: Approved for public release; distribution is unlimited.

resent possible state transitions that can occur due
to a message being sent or received. The message
is given as a label on the arc. A message being re-
ceived is indicated by an arrow before the message
and a message being sent is indicated by an arrow
after the message. States in which the protocol can
be terminated are shown gray.

The protocol is initiated with an incoming mes-
sage in which a command is issued. This essentially
corresponds to the request message in FIPA. The
terminology is different to indicate that this mes-
sage represents the issuing of a command rather
than a request. This indicates that the sender must
have authority to issue commands to the receiver,
which may be due to a pre-existing authority rela-
tionship or some prior negotiation that has taken
place (by means of another protocol not defined
here).

Given that the sending agent has authority over
the receiving agent, the expected response would be
for the receiver to accept. However, there may be a
reason why the receiver has to reject, for example,
if a resource required for the action execution is
currently unavailable. Thus, the executing agent
has to respond to accept or reject the command.

It is not assumed that commands are only issued
for immediate action. Normally, there would be a
time interval specified as part of the activity de-
scription: CPR/BDI allows for at least two time
points to be specified with any activity, beginning
and end of the activity. This means that things can
happen after the acceptance of a command and the
start of the corresponding action. If something hap-
pens that means the receiver can no longer execute
the command, it has to send a renege message to
the agent that issued the command.

When the executing agent begins with the exe-
cution, it has to send an according message to the
agent that issued the command. At this point the
executing agent is said to be “performing”, a block
that will be reused in later protocols and thus in-
dicated as a box in figure 13.

In CPR/BDI, as in most AI planning represen-
tations, an action is associated with effects, that is,
fluent relations in the world state that change as
a direct result of the action being executed. Given
that we consider actions to be temporal, effects can
occur at different time points, but not before an
action has been started. Some effects will occur
immediately after the beginning of an action (es-

0

→ command α

1 2

accept →reject →

3

started α→renege α→

6

→ abandon α

→ abandon α
5

4

pe
rf

or
m

in
g

8

7

pe
rf

or
m

in
g

→ abandon α

6

Figure 14: Abandoning Execution

pecially negative effects, e.g. when a robot moves
away from a location) and others may occur later.
Some actions even have effects after the end of the
execution (e.g. the paint being dry after the exe-
cution of a paint action).

In the protocol described here the executing
agent is expected to send progress reports to the
commanding agent every time and effect is achieved
and when the action has been completed. Assum-
ing a shared model of the action the command-
ing agent can then monitor the progress and knows
when the effects can be used by other agents and
actions, or when execution deviates from the model,
which could be considered a failure. Note that this
is a far more detailed model of a failure than the
simple message in the FIPA protocol.

16.2 Abandoning Execution

In an extension to the basic protocol the FIPA
specification allows the commanding agent to send
a cancel message. The executing agent is meant
to somehow stop executing the command at this
point. Figure 14 shows an extended version of the
protocol described above to allow for similar func-
tionality: abandoning the action at any stage.

The protocol is initiated as before by the com-
mander sending a command to the executing agent.
Assuming that the executing agent does not re-
spond immediately (presumably it will have to do
some planning before it can accept), it is possible
that the commander cancels the command before
the executing agent accepts or rejects. This would

42

Distribution A: Approved for public release; distribution is unlimited.

terminate the protocol and should not lead to fur-
ther complications.

If the executing agent rejects the protocol is ter-
minated, as before. If it accepts, the commander
may still cancel the command before the execution
begins. Again, this should not lead to further com-
plications and simply terminate the protocol.

However, things become more complex once the
execution has started, and the commander will be
aware of this because it has received an according
message from the executing agent. If the comman-
der does not issue a message asking for the aban-
donment of execution, the protocol proceeds as be-
fore: the executing agent sends messages when ef-
fects have been achieved and when the action has
been completed. Once the action has been com-
pleted it can no longer be abandoned, even if there
are delayed effects still taking place.

How an action can be abandoned during execu-
tion clearly depends on the action in question. We
shall assume here that there are various points dur-
ing an execution at which an action can be aban-
doned. Clearly, effects that have already occurred
at the point of abandonment are not automatically
undone. However, future effects may or may not
be achieved. In fact, there may be a different set
of effects that has to be expected depending on the
point at which an action is abandoned. The proto-
col we have defined is based on this model: normal
performing is abandoned, but the performance of
some other action now continues. This will result
in effects being achieved and these will be relayed
through messages to the commander, including the
completion of the changed activity.

Ideally, the commander and the executing agent
have a shared model of activity that specifies how
actions can be abandoned. This could be done
through one set of effects for normal execution, and
various sets of additional effects associated with
different time points at which the action may be
abandoned. If the action cannot be abandoned,
the model collapses into the classical model: an ac-
tion with a set of preconditions and effects. Given
such a shared model it would be possible for the
commander to anticipate the result of abandoning
an action and hence, making a more informed de-
cision.

0

→ command π = l1:α1,…, ln:αn

1 2

5

accept →reject →

3 4

started α1 →renege π→

completed αi →

achieved αi e →

achieved αi e →pe
rf

or
m

in
g

started αi+1 →

Figure 15: Protocol for Plan Execution

16.3 Execution of Plans

The next step to extending the protocol involves
the commanding agent sending a whole plan to the
executing agent. For simplicity, this plan is as-
sumed to be a sequence of actions. Each action
in the plan must have a unique label so that it can
be uniquely identified in the plan. The protocol
outline is shown in figure 15, again from the per-
spective of the executing agent.

As before, the protocol begins with the comman-
der issuing the command, which is a plan. The ex-
ecuting agent can either reject or accept this plan,
where acceptance is the expected behavior. Also,
the executing agent can renege before the start of
the first action in the plan. Extending the protocol
with cancelation messages should be straight for-
ward.

Once the execution of the first action in the plan
begins, a message has to be sent informing it that
the action has been started. This followed by mes-
sages about achieved effects and completion of the
first action. This is effectively the performance
block introduced in section 16.1. In fact, there will
be one such block of messages corresponding to ev-
ery action in the plan. This allows the commanding
agent to follow execution of the plan in detail.

One obvious question here is how this differs from
a sequence of single execution commands issued by
the commander. The main difference is that the
executing agent sees the whole plan at once. Thus,
if a resource for an activity later in the plan is not
available, the executing agent can reject the plan

43

Distribution A: Approved for public release; distribution is unlimited.

started α→

→ abandon α

5

4
pe

rf
or

m
in

g

8

7

pe
rf

or
m

in
g

9
failed α ec →

→ abandon α

→ continue α

Figure 16: Protocol for Execution Failure

before the execution of the first action. On the
other hand, if the commander wants to change the
plan during execution, and extension of the pro-
tocol would be required allows for appropriate in-
tervention. In the simplest case this might be like
abandoning execution of the current action, and
therefore quite similar to the protocol described in
the previous section.

17 Dealing with Execution
Failure

The next obvious question then is how to deal with
execution failure. By execution failure we mean
any situation in which the executing agent fails to
achieve the effects that are in the shared model of
action.

17.1 Execution Failure Protocol

A partial protocol for dealing such failures is shown
in figure 16. The part up the execution of the action
is not included as this cannot lead to an execution
failure.

The protocol is shown from the message sent to
the commander that indicates that execution has
begun. This may lead to normal execution and
messages being exchanged as described in the “per-
forming” block defined above. Let us assume that,
at some point after the start of the action, execu-
tion fails. This means an expected effect did not
occur. This can mean that either nothing has been

achieved or, that an alternative outcome occurred.
In either case, the executing agent sends a mes-
sage to the commander informing it that it failed
to achieve an expected effect.

The commander can then decide whether it
wants the executing agent to continue with the ex-
ecution or abandon the action. This assumes that
the commander is aware of the goal structure and
can decide whether the effect in question was re-
quired for a subsequent action. If it was not, the
failed effect will not influence the plan. If the effect
was required by another action the commander will
need to do more than just tell the executing agent
to abandon execution.

17.2 Execution Failure and Planning

Execution failure is not a new problem in AI plan-
ning, with plan repair and re-planning being the
usual approaches. However, these approaches are
of limited applicability as they are only dealing with
expectable failure.

The underlying problem is really one of abstrac-
tion. When setting up a classic planning problem
in the first place, it is important to abstract away
from unnecessary detail in order to keep the search
space as small as possible. Classic AI research il-
lustrates how this can be done [Amarel, 1968]. As
a result, each state in the search space corresponds
to many states in the world state.

This may be a problem when execution fails: the
world state in which an agent finds itself may cor-
respond to a search state that represents success-
ful execution of an action, or it may not have a
corresponding abstract state in the search space.
For example, in a route planning problem we may
only consider specific locations in states, e.g. cities.
Then, no matter where in a city the agent is, the
search state representing this world state is the
same. And if an agent fails to get from one city to
another, its actual position will be somewhere along
the way, which does not correspond to a search
state at all. Thus, a planner would never find a
plan that recovers this agent, unless the underly-
ing planning problem that defines the search state
space is changed.

So, on the one hand we need to abstract away
from detail to create a small search space, but then
when plan execution fails, we may need to be able
to include more detail to deal with the failure at

44

Distribution A: Approved for public release; distribution is unlimited.

hand. Solving this problem is beyond this report.

18 Results and Discussion

This report describes work completed towards a
new framework for distributed multi-agent plan-
ning and plan execution. The first step has fo-
cussed on the plan representation that needs to be
sufficiently rich to allow the sharing of plans be-
tween humans, software systems, and robotic enti-
ties. The basis for this representation is the Core
Plan Representation discussed in section 3 and the
BDI model of agency discussed in section 4.

The main result of this work then is a combined
and refined ontological model for rich plan rep-
resentations. This model includes concepts that
will be required for a sharable plan representation
intended for distributed multi-agent planning and
plan execution.

While the first part of this report does specify
the ontology that constitutes the merged represen-
tation, it does not specify a specific syntax for the
representation. Furthermore, a meta-level will be
required for communicating plans, allowing agents
to not only share plans, but also to tell other agent
what they expect them to do with the communi-
cated plan. This will require a set of performatives
for working with shared plans.

This next part of this report addresses this
shortfall. It describes an implementation of the
CPR/BDI framework that comes in the form of an
extension to the MediaWiki software. This exten-
sion defines a number of XML tags that can be used
to mark up procedural knowledge in a wiki arti-
cle, resulting in a semi-formal representation over-
all. The advantage of using MediaWiki is that it
implements Web 2.0 style information sharing in a
robust framework. The extension we provide makes
it possible to represent procedural knowledge with
enough formalism to make it accessible to reasoning
engines such as AI planners.

This report has also defined four planning do-
main features that can be used by knowledge en-
gineers to provide information about the domain
they are encoding. The formal definition of the
features was used to design algorithms that can ex-
tract the actual feature values from the domain de-
scription. The algorithms are based on the domain
description only, i.e. they do not require a plan-

ning problem as input. The extracted features can
then be compared to the feature values specified
by the domain author to validate the domain de-
scription. This approach has been evaluated using
domains taken mostly from the international plan-
ning competition. The result shows that features
were consistent with those available in the domains,
where explicitly specified. Those features that were
not specified were extracted and manually verified,
to ensure they are consistent with the given set of
operators.

The first feature, the type system, is a rather
simple, flat division into equivalence classes. This
may not be suitable for very complex planning do-
mains, but the domains we have analyzed do not
exhibit much hierarchical structure. The advantage
of such a type system is that it can be easily added
to the operator descriptions in the form of unary
preconditions. Furthermore, we showed that the
type system derived by our algorithm is the most
specific type system of its kind based solely on the
operator descriptions. An open question is whether
this is identical to the least general generalization
[Plotkin, 1969] used in machine learning. The algo-
rithm could be refined to derive a hierarchical type
system if one takes into account the directionality
of the operators, but for a type system consisting of
equivalence classes this is irrelevant. Also, the al-
gorithm described in this paper should also be ap-
plicable to hierarchical task network domains, but
this has not yet been implemented.

Actions with inconsistent effects are another fea-
ture we have defined. For most domains, such ac-
tions are probably not desirable. In fact, the ad-
mission of such actions leads to a different planning
problem as the state spaces with or without such
actions may be different for the same planning do-
main and problem. Also, planners that translate a
strips planning problem (with negative precondi-
tions) into a propositional problem (without neg-
ative preconditions) need to be more careful if ac-
tions with inconsistent effects are permitted. The
translation method described in [Ghallab et al.,
2004, section 2.6] does not work in this case as it
introduces independent predicates for a predicate
and its negations, which can become true in the
same state if an action with inconsistent effects is
applied. This would render the planner potentially
unsound.

The final feature which defines reversible actions

45

Distribution A: Approved for public release; distribution is unlimited.

is somewhat different as it can only be usefully used
as a necessary criterion to test whether one oper-
ator is the reverse of another. The more strict,
sufficient definition does not provide any compu-
tational advantage. The difference is simply that
the necessary criterion can be computed on the ba-
sis of the operator descriptions, whereas the suffi-
cient test requires knowledge of the state in which
an action is applied. The difference is quite sub-
tle though, and may not matter in practice. The
necessary criterion requires the positive and nega-
tive effects to cancel each other. However, if a state
contains an atom that is also added by the first ac-
tion, but then deleted by the second action, then
the state will be changed. If an operator listed all
the relevant atoms also as preconditions, this ex-
ception would not hold.

Finally, we have looked at established agent com-
munication frameworks with the focus on support
they might provide for distributed plan execution.
The message structure in the analyzed frameworks
is rather similar and seems sufficiently expressive.
Much rests on the performatives in the two frame-
works as these define the communicative acts to
the agents. However, communicative acts do oc-
cur in isolation, and it is the interaction protocols
that defines the context in which performatives are
to be used. The FIPA agent framework is more
advanced in this respect and comes closer to our
needs by defining a protocol specifically for the dis-
tributed execution of an action. This protocol has
formed the basis for our own protocols described in
this report.

Having defined a number of protocols it is now
possible to go back and analyze them in terms of
communicative acts required. The following is a
list of all the message types used in the protocols
for distributed plan execution:

• command: the commanding agent issues a com-
mand; the content is a description of the com-
manded activity; corresponds to the request
performative in FIPA;

• reject: the executing agent rejects the com-
mand; no content required; corresponds to the
refuse performative in FIPA;

• accept: the executing agent accepts the com-
mand; no content required; corresponds to the
agree performative in FIPA;

• renege: the executing agent reneges the com-
mand; the content is a reference to the action
in question; no corresponding performative in
FIPA;

• started: the executing agent starts the exe-
cution; the content is a reference to the action
in question; could use inform performative in
FIPA to convey this message;

• achieved: the executing agent has achieved
and effect; the content is a reference to the
effect of an action; could use inform perfor-
mative in FIPA to convey this message;

• completed: the executing agent has completed
the execution; the content is a reference to the
action in question; could use inform performa-
tive in FIPA to convey this message;

• abandon: the commander instructs the execu-
tion agent to terminate execution (now); the
content is a reference to the action in ques-
tion; corresponds to the cancel performative
in FIPA;

• failed: the executing agent has failed to
achieve an effect; the content is a reference to
the effect of an action;could use inform per-
formative in FIPA to convey this message;

• continue:the commander instructs the exe-
cuting agent to continue with the execution;
the content is a reference to the action in ques-
tion; no corresponding performative in FIPA;

As can be seen, the majority of the performa-
tives required is already used for the simplest pro-
tocol. This indicates that the set of performatives
required for even more complex protocols could be
quite limited, rendering an implementation feasi-
ble.

19 Conclusions

Generative planning is a computationally difficult
problem. Putting plans in a wider context is a con-
ceptually difficult problem in the sense that there is
no single, agreed-upon definition of the plan com-
munication or execution problem. The report de-
scribes work towards a framework that addresses

46

Distribution A: Approved for public release; distribution is unlimited.

these problems, even if there is no formal defini-
tion.

The first step has been an ontological analysis
of a plan. If plans are to be communicated, it
needs to be agreed what constitutes a plan, and an
ontological view defining relevant concepts is the
normal way of going about this. We have imple-
mented this view in the context of a wiki, allowing
for shared and distributed knowledge engineering
of planning knowledge. One of the most interesting
lessons learned from this work is perhaps the fact
that there is much in the formal definition of a plan-
ning domain, that is not explicit. This is a serious
problem when it comes to knowledge sharing, or
maintaining the formal representation. To address
this problem we have developed a number of algo-
rithms that analyze a domain in terms of features
that could also be specified in the formal definition.
If these formal definition and the extracted features
are different, this indicates a problem with the do-
main definition. Also, the explicit representation
will help others to better understand the domain.

The ontology developed in the first part is for
describing plans. The meta-level developed in the
final part of the project defines a number of perfor-
matives and protocols that can be used during the
execution of a plan. This should make it possible
to control the execution at least to a limited degree
in a formal way.

References

[Allen et al., 1990] James Allen, James Hendler,
and Austin Tate, editors. Readings in Planning.
Morgan Kaufman, 1990.

[Amarel, 1968] Saul Amarel. On representations
of problems of reasoning about actions. In Don-
ald Michie, editor, Machine Intelligence 3, pages
131–171. Elsevier/North-Holland, 1968.

[Barrett, 2008] Daniel J. Barrett. MediaWiki:
Wikipedia and Beyond. O’Reilly, 2008.

[Blum and Furst, 1995] Avrim L. Blum and Mer-
rick L. Furst. Fast planning through planning
graph analysis. In Proc. 14th International Joint
Conference on Artificial Intelligence (IJCAI),
pages 1636–1642. Morgan Kaufmann, 1995.

[Coles and Smith, 2006] Andrew Coles and
Amanda Smith. Generic types and their use
in improving the quality of search heuristics.
In Proc. 25th Workshop of the UK Planning
and Scheduling Special Interest Group (PlanSIG
2006), 2006.

[Conklin, 2005] Jeffrey Conklin. Dialogue Map-
ping: Building Shared Understanding of Wicked
Problems. John Wiley and Sons, 2005.

[Dawson and Siklossy, 1977] Clive Dawson and
Laurent Siklossy. The role of preprocessing in
problem-solving systems. In Proc. 5th Interna-
tional Joint Conference on Artificial Intelligence
(IJCAI), pages 465–471. Morgan Kaufmann,
1977.

[Fikes and Nilsson, 1971] R. Fikes and N. Nilsson.
STRIPS: A new appraoch to the application of
theorem proving to problem solving. Artificial
Intelligence, 2:189–208, 1971. Reprinted in [Allen
et al., 1990, pages 88–97].

[Fox and Long, 1998] Maria Fox and Derek Long.
The automatic inference of state invariants in
TIM. Journal of Artificial Intelligence Research,
9:367–421, 1998.

[Fox and Long, 2003] Maria Fox and Derek Long.
pddl2.1 : An extension to pddl for expressing
temporal planning domains. Journal of Artificial
Intelligence Research, 20:61–124, 2003.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau,
and Paolo Traverso. Automated Planning. Mor-
gan Kaufmann, 2004.

[Kambhampati et al., 1995] S. Kambhampati,
C. Knoblock, and Q. Yang. Planning as refine-
ment search: A unified framework for evaluating
design tradeoffs in partial-order planning.
Artificial Intelligence, 76:167–238, 1995.

[Labrou and Finin, 1997] Yannis Labrou and Tim
Finin. A proposal for a new KQML specifica-
tion. Technical Report TR CS-97-03, University
of Maryland Baltimore County (UMBC), Balti-
more, Maryland, February 1997.

[McCluskey and Porteous, 1997] T.L. McCluskey
and J.M. Porteous. Engineering and compiling
planning domain models to promote validity and
efficiency. Artificial Intelligence, 95:1–65, 1997.

47

Distribution A: Approved for public release; distribution is unlimited.

[Pease and Carrico, 1996] R. Adam Pease and
Todd M. Carrico. Object model working group
core plan representation. Technical Report
AL/HR-TP-1996-0031, United States Air Force
Armstrong Laboratory, Wright-Patterson AFB,
OH, 1996.

[Plotkin, 1969] Gordon Plotkin. A note on in-
ductive generalization. In Bernard Meltzer and
Donald Michie, editors, Machine Intelligence
5, pages 153–164. Edinburgh University Press,
1969.

[Rao and Georgeff, 1991] Anand Rao and Michael
Georgeff. Modeling rational agents within a BDI-
architecture. In Proc. 2nd International Con-
ference on Knowledge Representation and Rea-
soning (KR), pages 473–484. Morgan Kaufmann,
1991.

[Russell and Norvig, 2003] Stuart J. Russell and
Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2nd edition, 2003.

[Smith, 1980] R. G. Smith. The contract net pro-
tocol: High level communication and control in
a distributed problem solver. In IEEE Transac-
tions on Computers, C-29(12):1104–1113, 1980.

[Tate, 1977] Austin Tate. Generating project net-
works. In Proc. 5th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages
888–893. Morgan Kaufmann, 1977. Reprinted in
[Allen et al., 1990, pages 291–296].

[Tate, 2003] Austin Tate. <I-N-C-A>: A shared
model for mixed-initiative synthesis tasks. In
Gheorghe Tecuci, editor, Proc. IJCAI Workshop
on Mixed-Initiative Intelligent Systems, pages
125–130, 2003.

[Wickler et al., 2006] Gerhard Wickler, Stephen
Potter, and Austin Tate. Recording rationale
in <I-N-C-A> for plan analysis. In Lee Mc-
Cluskey, Karen Myers, and Biplav Srivastava,
editors, Proc. ICAPS Workshop on Plan Anal-
ysis and Management, pages 5–11, 2006.

[Wickler et al., 2007] Gerhard Wickler, Stephen
Potter, Austin Tate, Michal Pĕchouc̆ek, and Ed-
uard Semsch. Planning and choosing: Augment-
ing HTN-based agents with mental attitudes.

In Proc. International Conference on Intelligent
Agent Technology, 2007.

[Wickler, 2010] Gerhard Wickler. Plan represen-
tations for distributed planning and execution.
Technical Report Project Report 1, AIAI, Uni-
versity of Edinburgh, Edinburgh, Scotland, 2010.

[Wooldridge and Jennings, 1995] Michael
Wooldridge and Nicholas Jennings. Intel-
ligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115–152,
1995.

[Wooldridge, 1999] Michael Wooldridge. Intelli-
gent agents. In Gerhard Weiss, editor, Multia-
gent Systems: A Modern Approach to Distributed
Artificial Intelligence, chapter 1, pages 27–77.
The MIT Press, 1999.

List of Symbols, Abbreviations,
and Acronyms

AI - Artificial Intelligence
BDI - Beliefs, Desires and Intentions
CPR - Core Plan Representation
HTN - Hierarchical Task Network
PDDL - Planning Domain Definition Language

48

Distribution A: Approved for public release; distribution is unlimited.

